ﻻ يوجد ملخص باللغة العربية
In this review, we present a simple guide for researchers to obtain pseudo-random samples with censored data. We focus our attention on the most common types of censored data, such as type I, type II, and random censoring. We discussed the necessary steps to sample pseudo-random values from long-term survival models where an additional cure fraction is informed. For illustrative purposes, these techniques are applied in the Weibull distribution. The algorithms and codes in R are presented, enabling the reproducibility of our study.
Malliavin weight sampling (MWS) is a stochastic calculus technique for computing the derivatives of averaged system properties with respect to parameters in stochastic simulations, without perturbing the systems dynamics. It applies to systems in or
In this guide, we present how to perform constraint-based causal discovery using three popular software packages: pcalg (with add-ons tpc and micd), bnlearn, and TETRAD. We focus on how these packages can be used with observational data and in the pr
The SMEFTsim package is designed to enable automated computations in the Standard Model Effective Field Theory (SMEFT), where the SM Lagrangian is extended with a complete basis of dimension six operators. It contains a set of models written in FeynR
This paper introduces a unified framework of counterfactual estimation for time-series cross-sectional data, which estimates the average treatment effect on the treated by directly imputing treated counterfactuals. Examples include the fixed effects
It was recently emphasised by Riley (2019); Schittenhelm & Wacker (2020) that that in the presence of plateaus in the likelihood function nested sampling (NS) produces faulty estimates of the evidence and posterior densities. After informally explain