ترغب بنشر مسار تعليمي؟ اضغط هنا

Sampling with censored data: a practical guide

200   0   0.0 ( 0 )
 نشر من قبل Pedro Ramos
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

In this review, we present a simple guide for researchers to obtain pseudo-random samples with censored data. We focus our attention on the most common types of censored data, such as type I, type II, and random censoring. We discussed the necessary steps to sample pseudo-random values from long-term survival models where an additional cure fraction is informed. For illustrative purposes, these techniques are applied in the Weibull distribution. The algorithms and codes in R are presented, enabling the reproducibility of our study.



قيم البحث

اقرأ أيضاً

Malliavin weight sampling (MWS) is a stochastic calculus technique for computing the derivatives of averaged system properties with respect to parameters in stochastic simulations, without perturbing the systems dynamics. It applies to systems in or out of equilibrium, in steady state or time-dependent situations, and has applications in the calculation of response coefficients, parameter sensitivities and Jacobian matrices for gradient-based parameter optimisation algorithms. The implementation of MWS has been described in the specific contexts of kinetic Monte Carlo and Brownian dynamics simulation algorithms. Here, we present a general theoretical framework for deriving the appropriate MWS update rule for any stochastic simulation algorithm. We also provide pedagogical information on its practical implementation.
In this guide, we present how to perform constraint-based causal discovery using three popular software packages: pcalg (with add-ons tpc and micd), bnlearn, and TETRAD. We focus on how these packages can be used with observational data and in the pr esence of mixed data (i.e., data where some variables are continuous, while others are categorical), a known time ordering between variables, and missing data. Throughout, we point out the relative strengths and limitations of each package, as well as give practical recommendations. We hope this guide helps anyone who is interested in performing constraint-based causal discovery on their data.
120 - Ilaria Brivio 2020
The SMEFTsim package is designed to enable automated computations in the Standard Model Effective Field Theory (SMEFT), where the SM Lagrangian is extended with a complete basis of dimension six operators. It contains a set of models written in FeynR ules and pre-exported to the UFO format, for usage within Monte Carlo event generators. The models differ in the flavor assumptions and in the input parameters chosen for the electroweak sector. The present document provides a self-contained, pedagogical reference that collects all the theoretical and technical aspects relevant to the use of SMEFTsim and it documents the release of version 3.0. Compared to the previous release, the description of Higgs production via gluon-fusion in the SM has been significantly improved, two flavor assumptions for studies in the top quark sector have been added, and a new feature has been implemented, that allows the treatment of linearized SMEFT corrections to the propagators of unstable particles.
105 - Licheng Liu , Ye Wang , 2021
This paper introduces a unified framework of counterfactual estimation for time-series cross-sectional data, which estimates the average treatment effect on the treated by directly imputing treated counterfactuals. Examples include the fixed effects counterfactual estimator, interactive fixed effects counterfactual estimator, and matrix completion estimator. These estimators provide more reliable causal estimates than conventional twoway fixed effects models when treatment effects are heterogeneous or unobserved time-varying confounders exist. Under this framework, we propose a new dynamic treatment effects plot, as well as several diagnostic tests, to help researchers gauge the validity of the identifying assumptions. We illustrate these methods with two political economy examples and develop an open-source package, fect, in both R and Stata to facilitate implementation.
It was recently emphasised by Riley (2019); Schittenhelm & Wacker (2020) that that in the presence of plateaus in the likelihood function nested sampling (NS) produces faulty estimates of the evidence and posterior densities. After informally explain ing the cause of the problem, we present a modified version of NS that handles plateaus and can be applied retrospectively to NS runs from popular NS software using anesthetic. In the modified NS, live points in a plateau are evicted one by one without replacement, with ordinary NS compression of the prior volume after each eviction but taking into account the dynamic number of live points. The live points are replenished once all points in the plateau are removed. We demonstrate it on a number of examples. Since the modification is simple, we propose that it becomes the canonical version of Skillings NS algorithm.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا