ﻻ يوجد ملخص باللغة العربية
The Gilbert-Varshamov bound (non-constructively) establishes the existence of binary codes of distance $1/2 -epsilon$ and rate $Omega(epsilon^2)$ (where an upper bound of $O(epsilon^2log(1/epsilon))$ is known). Ta-Shma [STOC 2017] gave an explicit construction of $epsilon$-balanced binary codes, where any two distinct codewords are at a distance between $1/2 -epsilon/2$ and $1/2+epsilon/2$, achieving a near optimal rate of $Omega(epsilon^{2+beta})$, where $beta to 0$ as $epsilon to 0$. We develop unique and list decoding algorithms for (essentially) the family of codes constructed by Ta-Shma. We prove the following results for $epsilon$-balanced codes with block length $N$ and rate $Omega(epsilon^{2+beta})$ in this family: - For all $epsilon, beta > 0$ there are explicit codes which can be uniquely decoded up to an error of half the minimum distance in time $N^{O_{epsilon, beta}(1)}$. - For any fixed constant $beta$ independent of $epsilon$, there is an explicit construction of codes which can be uniquely decoded up to an error of half the minimum distance in time $(log(1/epsilon))^{O(1)} cdot N^{O_beta(1)}$. - For any $epsilon > 0$, there are explicit $epsilon$-balanced codes with rate $Omega(epsilon^{2+beta})$ which can be list decoded up to error $1/2 - epsilon$ in time $N^{O_{epsilon,epsilon,beta}(1)}$, where $epsilon, beta to 0$ as $epsilon to 0$. The starting point of our algorithms is the list decoding framework from Alev et al. [SODA 2020], which uses the Sum-of-Squares SDP hierarchy. The rates obtained there were quasipolynomial in $epsilon$. Here, we show how to overcome the far from optimal rates of this framework obtaining unique decoding algorithms for explicit binary codes of near optimal rate. These codes are based on simple modifications of Ta-Shmas construction.
We consider families of codes obtained by lifting a base code $mathcal{C}$ through operations such as $k$-XOR applied to local views of codewords of $mathcal{C}$, according to a suitable $k$-uniform hypergraph. The $k$-XOR operation yields the direct
We address the problem of decoding Gabidulin codes beyond their unique error-correction radius. The complexity of this problem is of importance to assess the security of some rank-metric code-based cryptosystems. We propose an approach that introduce
Minimum storage regenerating (MSR) codes are MDS codes which allow for recovery of any single erased symbol with optimal repair bandwidth, based on the smallest possible fraction of the contents downloaded from each of the other symbols. Recently, ce
Power decoding is a partial decoding paradigm for arbitrary algebraic geometry codes for decoding beyond half the minimum distance, which usually returns the unique closest codeword, but in rare cases fails to return anything. The original version de
This article discusses the decoding of Gabidulin codes and shows how to extend the usual decoder to any supercode of a Gabidulin code at the cost of a significant decrease of the decoding radius. Using this decoder, we provide polynomial time attacks