ﻻ يوجد ملخص باللغة العربية
We show that the Strang splitting method applied to a diffusion-reaction equation with inhomogeneous general oblique boundary conditions is of order two when the diffusion equation is solved with the Crank-Nicolson method, while order reduction occurs in general if using other Runge-Kutta schemes or even the exact flow itself for the diffusion part. We prove these results when the source term only depends on the space variable, an assumption which makes the splitting scheme equivalent to the Crank-Nicolson method itself applied to the whole problem. Numerical experiments suggest that the second order convergence persists with general nonlinearities.
We develop a general strategy in order to implement (approximate) discrete transparent boundary conditions for finite difference approximations of the two-dimensional transport equation. The computational domain is a rectangle equipped with a Cartesi
In this paper we develop an existence theory for the nonlinear initial-boundary value problem with singular diffusion $partial_t u = text{div}(k(x) abla G(u))$, $u|_{t=0}=u_0$ with Neumann boundary conditions $k(x) abla G(u)cdot u = 0$. Here $xin Bs
Strang splitting is a well established tool for the numerical integration of evolution equations. It allows the application of tailored integrators for different parts of the vector field. However, it is also prone to order reduction in the case of n
In this paper we introduce a new approach to compute rigorously solutions of Cauchy problems for a class of semi-linear parabolic partial differential equations. Expanding solutions with Chebyshev series in time and Fourier series in space, we introd
The tangential condition was introduced in [Hanke et al., 95] as a sufficient condition for convergence of the Landweber iteration for solving ill-posed problems. In this paper we present a series of time dependent benchmark inverse problems for which we can verify this condition.