ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient boundary corrected Strang splitting

94   0   0.0 ( 0 )
 نشر من قبل Lukas Einkemmer
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Strang splitting is a well established tool for the numerical integration of evolution equations. It allows the application of tailored integrators for different parts of the vector field. However, it is also prone to order reduction in the case of non-trivial boundary conditions. This order reduction can be remedied by correcting the boundary values of the intermediate splitting step. In this paper, three different approaches for constructing such a correction in the case of inhomogeneous Dirichlet, Neumann, and mixed boundary conditions are presented. Numerical examples that illustrate the effectivity and benefits of these corrections are included.



قيم البحث

اقرأ أيضاً

We approximate the solution for the time dependent Schrodinger equation (TDSE) in two steps. We first use a pseudo-spectral collocation method that uses samples of functions on rank-1 or rank-r lattice points with unitary Fourier transforms. We then get a system of ordinary differential equations in time, which we solve approximately by stepping in time using the Strang splitting method. We prove that the numerical scheme proposed converges quadratically with respect to the time step size, given that the potential is in a Korobov space with the smoothness parameter greater than $9/2$. Particularly, we prove that the required degree of smoothness is independent of the dimension of the problem. We demonstrate our new method by comparing with results using sparse grids from [12], with several numerical examples showing large advantage for our new method and pushing the examples to higher dimensionality. The proposed method has two distinctive features from a numerical perspective: (i) numerical results show the error convergence of time discretization is consistent even for higher-dimensional problems; (ii) by using the rank-$1$ lattice points, the solution can be efficiently computed (and further time stepped) using only $1$-dimensional Fast Fourier Transforms.
Many problems encountered in plasma physics require a description by kinetic equations, which are posed in an up to six-dimensional phase space. A direct discretization of this phase space, often called the Eulerian approach, has many advantages but is extremely expensive from a computational point of view. In the present paper we propose a dynamical low-rank approximation to the Vlasov--Poisson equation, with time integration by a particular splitting method. This approximation is derived by constraining the dynamics to a manifold of low-rank functions via a tangent space projection and by splitting this projection into the subprojections from which it is built. This reduces a time step for the six- (or four-) dimensional Vlasov--Poisson equation to solving two systems of three- (or two-) dimensional advection equations over the time step, once in the position variables and once in the velocity variables, where the size of each system of advection equations is equal to the chosen rank. By a hierarchical dynamical low-rank approximation, a time step for the Vlasov--Poisson equation can be further reduced to a set of six (or four) systems of one-dimensional advection equations, where the size of each system of advection equations is still equal to the rank. The resulting systems of advection equations can then be solved by standard techniques such as semi-Lagrangian or spectral methods. Numerical simulations in two and four dimensions for linear Landau damping, for a two-stream instability and for a plasma echo problem highlight the favorable behavior of this numerical method and show that the proposed algorithm is able to drastically reduce the required computational effort.
98 - Yuya Suzuki , Dirk Nuyens 2019
In this paper, we propose a numerical method to approximate the solution of the time-dependent Schrodinger equation with periodic boundary condition in a high-dimensional setting. We discretize space by using the Fourier pseudo-spectral method on ran k-$1$ lattice points, and then discretize time by using a higher-order exponential operator splitting method. In this scheme the convergence rate of the time discretization depends on properties of the spatial discretization. We prove that the proposed method, using rank-$1$ lattice points in space, allows to obtain higher-order time convergence, and, additionally, that the necessary condition on the space discretization can be independent of the problem dimension $d$. We illustrate our method by numerical results from 2 to 8 dimensions which show that such higher-order convergence can really be obtained in practice.
For scattering problems of time-harmonic waves, the boundary integral equation (BIE) methods are highly competitive, since they are formulated on lower-dimension boundaries or interfaces, and can automatically satisfy outgoing radiation conditions. F or scattering problems in a layered medium, standard BIE methods based on the Greens function of the background medium must evaluate the expensive Sommefeld integrals. Alternative BIE methods based on the free-space Greens function give rise to integral equations on unbounded interfaces which are not easy to truncate, since the wave fields on these interfaces decay very slowly. We develop a BIE method based on the perfectly matched layer (PML) technique. The PMLs are widely used to suppress outgoing waves in numerical methods that directly discretize the physical space. Our PML-based BIE method uses the Greens function of the PML-transformed free space to define the boundary integral operators. The method is efficient, since the Greens function of the PML-transformed free space is easy to evaluate and the PMLs are very effective in truncating the unbounded interfaces. Numerical examples are presented to validate our method and demonstrate its accuracy.
We show that the Strang splitting method applied to a diffusion-reaction equation with inhomogeneous general oblique boundary conditions is of order two when the diffusion equation is solved with the Crank-Nicolson method, while order reduction occur s in general if using other Runge-Kutta schemes or even the exact flow itself for the diffusion part. We prove these results when the source term only depends on the space variable, an assumption which makes the splitting scheme equivalent to the Crank-Nicolson method itself applied to the whole problem. Numerical experiments suggest that the second order convergence persists with general nonlinearities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا