ﻻ يوجد ملخص باللغة العربية
We formulate the most general gravitational models with constant negative curvature (hyperbolic gravity) on an arbitrary orientable two-dimensional surface of genus $g$ with $b$ circle boundaries in terms of a $text{PSL}(2,mathbb R)_partial$ gauge theory of flat connections. This includes the usual JT gravity with Dirichlet boundary conditions for the dilaton field as a special case. A key ingredient is to realize that the correct gauge group is not the full $text{PSL}(2,mathbb R)$, but a subgroup $text{PSL}(2,mathbb R)_{partial}$ of gauge transformations that go to $text{U}(1)$ local rotations on the boundary. We find four possible classes of boundary conditions, with associated boundary terms, that can be applied to each boundary component independently. Class I has five inequivalent variants, corresponding to geodesic boundaries of fixed length, cusps, conical defects of fixed angle or large cylinder-shaped asymptotic regions with boundaries of fixed lengths and extrinsic curvatures one or greater than one. Class II precisely reproduces the usual JT gravity. In particular, the crucial extrinsic curvature boundary term of the usual second order formulation is automatically generated by the gauge theory boundary term. Class III is a more exotic possibility for which the integrated extrinsic curvature is fixed on the boundary. Class IV is the Legendre transform of class II; the constraint of fixed length is replaced by a boundary cosmological constant term.
Any local gauge theory can be represented as an AKSZ sigma model (upon parameterization if necessary). However, for non-topological models in dimension higher than 1 the target space is necessarily infinite-dimensional. The interesting alternative kn
We revisit the implementation of the metric-independent Fock-Schwinger gauge in the abelian Chern-Simons field theory defined in ${mathbb{R}}^3$ by means of a homotopy condition. This leads to the lagrangian $F wedge hF$ in terms of curvatures $F$ an
We give an octonionic formulation of the N = 1 supersymmetry algebra in D = 11, including all brane charges. We write this in terms of a novel outer product, which takes a pair of elements of the division algebra A and returns a real linear operator
We study an $SO(1,3)$ pure connection formulation in four dimensions for real-valued fields, inspired by the Capovilla, Dell and Jacobson complex self-dual approach. By considering the CMPR BF action, also, taking into account a more general class of
The choice of a star product realization for noncommutative field theory can be regarded as a gauge choice in the space of all equivalent star products. With the goal of having a gauge invariant treatment, we develop tools, such as integration measur