ﻻ يوجد ملخص باللغة العربية
Any local gauge theory can be represented as an AKSZ sigma model (upon parameterization if necessary). However, for non-topological models in dimension higher than 1 the target space is necessarily infinite-dimensional. The interesting alternative known for some time is to allow for degenerate presymplectic structure in the target space. This leads to a very concise AKSZ-like representation for frame-like Lagrangians of gauge systems. In this work we concentrate on Einstein gravity and show that not only the Lagrangian but also the full-scale Batalin--Vilkovisky formulation is naturally encoded in the presymplectic AKSZ formulation, giving an elegant supergeometrical construction of BV for Cartan-Weyl action. The same applies to the main structures of the respective Hamiltonian BFV formulation.
We formulate the most general gravitational models with constant negative curvature (hyperbolic gravity) on an arbitrary orientable two-dimensional surface of genus $g$ with $b$ circle boundaries in terms of a $text{PSL}(2,mathbb R)_partial$ gauge th
It is well-known that a Lagrangian induces a compatible presymplectic form on the equation manifold (stationary surface, understood as a submanifold of the respective jet-space). Given an equation manifold and a compatible presymplectic form therein,
We discuss a general procedure to encode the reduction of the target space geometry into AKSZ sigma models. This is done by considering the AKSZ construction with target the BFV model for constrained graded symplectic manifolds. We investigate the re
We study an $SO(1,3)$ pure connection formulation in four dimensions for real-valued fields, inspired by the Capovilla, Dell and Jacobson complex self-dual approach. By considering the CMPR BF action, also, taking into account a more general class of
A gauge PDE is a natural notion which arises by abstracting what physicists call a local gauge field theory defined in terms of BV-BRST differential (not necessarily Lagrangian). We study supergeometry of gauge PDEs paying particular attention to glo