ﻻ يوجد ملخص باللغة العربية
In galactic nuclei, the gravitational potential is dominated by the central supermassive black hole, so stars follow quasi-Keplerian orbits. These orbits are distorted by gravitational forces from other stars, leading to long-term orbital relaxation. The direct numerical study of these processes is challenging because the fast orbital motion imposed by the central black hole requires very small timesteps. Within the secular approximation of smearing out stars along their underlying Keplerian orbits, a multipole expansion of the pairwise interaction between the stars yields an efficient numerical code to investigate the long-term evolution of their orbital parameters. These new simulations precisely recover the diffusion coefficients of stellar eccentricities obtained through analytical calculations of the secular dynamics. The computational complexity of the present method scales linearly with the total number of stars, so it should prove useful to study the long-term evolution of self-gravitating systems dominated by a central mass.
The angular momentum evolution of stars close to massive black holes (MBHs) is driven by secular torques. In contrast to two-body relaxation, where interactions between stars are incoherent, the resulting resonant relaxation (RR) process is character
We present 1-resolution ALMA observations of the circumnuclear disk (CND) and the environment around SgrA*. The images unveil the presence of small spatial scale CO (J=3-2) molecular cloudlets within the central pc of the Milky Way, moving at high sp
In this paper we consider a scenario where the currently observed hypervelocity stars in our Galaxy have been ejected from the Galactic center as a result of dynamical interactions with an intermediate-mass black hole (IMBH) orbiting the central supe
The centre of our Milky Way harbours the closest candidate for a supermassive black hole. The source is thought to be powered by radiatively inefficient accretion of gas from its environment. This form of accretion is a standard mode of energy supply
The near-IR emission in Type 1 AGNs is thought to be dominated by the thermal radiation from dust grains that are heated by the central engine in the UV/optical and are almost at the sublimation temperature. A brightening of the central source can th