ﻻ يوجد ملخص باللغة العربية
Performance and lifetime testing of batteries requires considerable effort and expensive specialist equipment. A wide range of potentiostats and battery testers are available on the market, but there is no standardisation of data exchange and data storage between them. To address this, we present Galvanalyser, a battery test database developed to manage the growing challenges of collating, managing and accessing data produced by multiple different battery testers. Collation is managed by a client-side application, the `Harvester, which pushes new data up to a PostgreSQL database on a server. Data access is possible in two ways: firstly, a web application allows data to be searched and viewed in a browser, with the option to plot data; secondly, a Python application programming interface (API) can connect directly to the database and pull requested data sets into Python. We hope to make Galvanalyser openly available soon. If you wish to test the system, please contact us for early access.
Propulsion system electrification revolution has been undergoing in the automotive industry. The electrified propulsion system improves energy efficiency and reduces the dependence on fossil fuel. However, the batteries of electric vehicles experienc
Electric vehicles (EVs) have been growing rapidly in popularity in recent years and have become a future trend. It is an important aspect of user experience to know the Remaining Charging Time (RCT) of an EV with confidence. However, it is difficult
The complex nature of lithium-ion battery degradation has led to many machine learning based approaches to health forecasting being proposed in literature. However, machine learning can be computationally intensive. Linear approaches are faster but h
Growing amount of hydraulic fracturing (HF) jobs in the recent two decades resulted in a significant amount of measured data available for development of predictive models via machine learning (ML). In multistage fractured completions, post-fracturin
In this work, we present the development of a new database, namely Sound Localization and Classification (SLoClas) corpus, for studying and analyzing sound localization and classification. The corpus contains a total of 23.27 hours of data recorded u