ﻻ يوجد ملخص باللغة العربية
Growing amount of hydraulic fracturing (HF) jobs in the recent two decades resulted in a significant amount of measured data available for development of predictive models via machine learning (ML). In multistage fractured completions, post-fracturing production analysis reveals that different stages produce very non-uniformly due to a combination of geomechanics and fracturing design factors. Hence, there is a significant room for improvement of current design practices. The workflow is essentially split into two stages. As a result of the first stage, the present paper summarizes the efforts into the creation of a digital database of field data from several thousands of multistage HF jobs on wells from circa 20 different oilfields in Western Siberia, Russia. In terms of the number of points (fracturing jobs), the present database is a rare case of a representative dataset of about 5000 data points. Each point in the data base contains the vector of 92 input variables (the reservoir, well and the frac design parameters) and the vector of production data, which is characterized by 16 parameters, including the target, cumulative oil production. Data preparation has been done using various ML techniques: the problem of missing values in the database is solved with collaborative filtering for data imputation; outliers are removed using visualisation of cluster data structure by t-SNE algorithm. The production forecast problem is solved via CatBoost algorithm. Prediction capability of the model is measured with the coefficient of determination (R^2) and reached 0.815. The inverse problem (selecting an optimum set of fracturing design parameters to maximize production) will be considered in the second part of the study to be published in another paper, along with a recommendation system for advising DESC and production stimulation engineers on an optimized fracturing design.
Applying security as a lifecycle practice is becoming increasingly important to combat targeted attacks in safety-critical systems. Among others there are two significant challenges in this area: (1) the need for models that can characterize a realis
As people spend up to 87% of their time indoors, intelligent Heating, Ventilation, and Air Conditioning (HVAC) systems in buildings are essential for maintaining occupant comfort and reducing energy consumption. These HVAC systems in smart buildings
Building energy management is one of the core problems in modern power grids to reduce energy consumption while ensuring occupants comfort. However, the building energy management system (BEMS) is now facing more challenges and uncertainties with the
Understanding the models that characterize the thermal dynamics in a smart building is important for the comfort of its occupants and for its energy optimization. A significant amount of research has attempted to utilize thermodynamics (physical) mod
This work proposes a novel Energy-Aware Network Operator Search (ENOS) approach to address the energy-accuracy trade-offs of a deep neural network (DNN) accelerator. In recent years, novel inference operators have been proposed to improve the computa