ترغب بنشر مسار تعليمي؟ اضغط هنا

Extending the dynamic range of SiPMs by understanding their non-linear behavior

95   0   0.0 ( 0 )
 نشر من قبل Julian Kemp
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This publication focuses on the study of silicon photomultipliers (SiPMs) in view of a reconstruction of the incident photon flux in the regime of highly non-linear response. SiPMs are semiconductor based light detectors compiled of avalanche photodiodes operated in Geiger mode. They are both mechanically and optically very robust and have a high gain and photon detection efficiency. These features make them ideal photonsensors in a wide range of applications and they are nowadays replacing conventional photomultiplier tubes in many experiments. The cellular structure of SiPMs where each cell can only detect one photon at a time results in a non-linear dynamic range limiting the possible applications. We studied a commonly used SiPM model based on an equivalent electronic circuit that allows the simulation of the SiPM response in many situations. Dedicated measurements with two consecutive light pulses prove its applicability. By adapting the model to the measurements, intrinsic parameters of the SiPM such as quenching resistance or diode capacitance can be determined. With the obtained intrinsic parameters, the model correctly describes the recharge behavior of the SiPM cells. Based on the model, an algorithm was developed to correct the non-linearity of the dynamic range of SiPMs. As the model contains full information on the recharge of the SiPM cells, the effects leading to the non-linearity can be corrected for. The algorithm exploits the time information in the measured voltage signal and reconstructs the number of incident photons. It has shown an excellent performance and allows to increase the dynamic range with only 10% deviation from linearity by at least two orders of magnitude.



قيم البحث

اقرأ أيضاً

We describe the use of digital phase noise test sets at frequencies well beyond the sampling rate of their analog-to-digital converters. The technique proposed involves the transfer of phase fluctuations from an arbitrary high carrier frequency to wi thin the operating frequency range of the digital instrument. The validity of the proposed technique has been proven via comparison with conventional methods. Digital noise measurements eliminate the need for calibration and improve consistency of experimental results. Mechanisms limiting the resolution of spectral measurements are also discussed.
Dual-comb (DC) ranging is an established method for high-precision and high-accuracy distance measurements. It is, however, restricted by an inherent length ambiguity and the requirement for complex control loops for comb stabilization. Here, we pres ent a simple approach for expanding the ambiguity-free measurement length of dual-comb ranging by exploiting the intrinsic intensity modulation of a single-cavity dualcolor DC for simultaneous time-of-flight a nd D C distance measurements. This measurement approach enables the measurement of distances up to several hundred km with the precision and accuracy of a dualcomb interferometric setup while providing a high data acquisition rate (~2 kHz) and requiring only the repetition rate of one of the combs to be stabilized.
We have developed a function which describes SiPM response in both small signal and highly saturated regimes. The function includes the reactivation of SiPM pixels during a single input light pulse, and results in an approximately linear increase of SiPM response in the highly saturated regime, as observed in real SiPMs. This article shows that the function can accurately describe the measured response of real SiPM devices over a wide range of signal intensities.
Accurate readout of low-power optical higher-order spatial modes is of increasing importance to the precision metrology community. Mode sensors are used to prevent mode mismatches from degrading quantum and thermal noise mitigation strategies. Direct mode analysis sensors (MODAN) are a promising technology for real-time monitoring of arbitrary higher-order modes. We demonstrate MODAN with photo-diode readout to mitigate the typically low dynamic range of CCDs. We look for asymmetries in the response our sensor to break degeneracies in the relative alignment of the MODAN and photo-diode and consequently improve the dynamic range of the mode sensor. We provide a tolerance analysis and show methodology that can be applied for sensors beyond first-order spatial modes.
Silicon Photomultipliers (SiPMs) are quickly replacing traditional photomultiplier tubes (PMTs) as the readout of choice for gamma-ray scintillation detectors in space. While they offer substantial size, weight and power saving, they have shown to be susceptible to radiation damage. SensL SiPMs with different cell sizes were irradiated with 64 MeV protons and 8 MeV electrons. In general, results show larger cell sizes are more susceptible to radiation damage with the largest 50 um SiPMs showing the greatest increase in current as a function of dose. Current increases were observed for doses as low at ~2 rad(Si) for protons and ~20 rad(Si) for electrons. The U.S. Naval Research Laboratorys (NRL) Strontium Iodide Radiation Instrument (SIRI-1) experienced a 528 uA increase in the bias current of the on-board 2x2 SensL J-series 60035 SiPM over its one-year mission in sun-synchronous orbit. The work here focuses on the increase in bulk current observed with increasing radiation damage and was performed to better quantify this effect as a function of dose for future mission. These include the future NRL mission SIRI-2, the follow on to SIRI-1, Glowbug and the GAGG Radiation Instrument (GARI).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا