ﻻ يوجد ملخص باللغة العربية
We have developed a function which describes SiPM response in both small signal and highly saturated regimes. The function includes the reactivation of SiPM pixels during a single input light pulse, and results in an approximately linear increase of SiPM response in the highly saturated regime, as observed in real SiPMs. This article shows that the function can accurately describe the measured response of real SiPM devices over a wide range of signal intensities.
A Monte Carlo program which simulates the response of SiPMs is presented. Input to the program are the mean number and the time distribution of Geiger discharges from light, as well as the dark-count rate. For every primary Geiger discharge from ligh
The Mu2e calorimeter is composed of two disks each containing 1348 pure CsI crystals, each crystal read out by two arrays of 6x6 mm2 monolithic SiPMs. The experimental requirements have been translated in a series of technical specifications for both
Prototype SiPMs with 4384 pixels of dimensions $15 times 15~mu $m$^2$ produced by KETEK have been irradiated with reactor neutrons to eight fluences between $10^9$ and $5times 10^{14}$ cm$^{-2}$. For temperatures between $-30~^circ $C and $+30~^circ
The characterisation of radiation-damaged SiPMs is a major challenge, when the average time between dark counts approaches, or even exceeds, the signal decay time. In this note a collection of formulae is presented, which have been developed and used
Understanding reflective properties of materials and photodetection efficiency (PDE) of photodetectors is important for optimizing energy resolution and sensitivity of the next generation neutrinoless double beta decay, direct detection dark matter,