ترغب بنشر مسار تعليمي؟ اضغط هنا

Light chaotic dynamics in the transformation from curved to flat surfaces

272   0   0.0 ( 0 )
 نشر من قبل Chenni Xu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Light propagation on a two-dimensional curved surface embedded in a three-dimensional space has attracted increasing attention as an analog model of four-dimensional curved spacetime in laboratory. Despite recent developments in modern cosmology on the dynamics and evolution of the universe, investigation of nonlinear dynamics of light in non-Euclidean geometry is still scarce and remains challenging. Here, we study classical and wave chaotic dynamics on a family of surfaces of revolution by considering its equivalent conformally transformed flat billiard, with nonuniform distribution of refractive index. This equivalence is established by showing how these two systems have the same equations and the same dynamics. By exploring the Poincar{e} surface of section, the Lyapunov exponent and the statistics of eigenmodes and eigenfrequency spectrum in the transformed inhomogeneous table billiard, we find that the degree of chaos is fully controlled by a single geometric parameter of the curved surface. A simple interpretation of our findings in transformed billiards, the fictitious force, allows to extend our prediction to other class of curved surfaces. This powerful analogy between two a prior unrelated systems not only brings forward a novel approach to control the degree of chaos, but also provides potentialities for further studies and applications in various fields, such as billiards design, optical fibers, or laser microcavities.



قيم البحث

اقرأ أيضاً

There is by now a large consensus in modern monetary policy. This consensus has been built upon a dynamic general equilibrium model of optimal monetary policy as developed by, e.g., Goodfriend and King (1997), Clarida et al. (1999), Svensson (1999) a nd Woodford (2003). In this paper we extend the standard optimal monetary policy model by introducing nonlinearity into the Phillips curve. Under the specific form of nonlinearity proposed in our paper (which allows for convexity and concavity and secures closed form solutions), we show that the introduction of a nonlinear Phillips curve into the structure of the standard model in a discrete time and deterministic framework produces radical changes to the major conclusions regarding stability and the efficiency of monetary policy. We emphasize the following main results: (i) instead of a unique fixed point we end up with multiple equilibria; (ii) instead of saddle--path stability, for different sets of parameter values we may have saddle stability, totally unstable equilibria and chaotic attractors; (iii) for certain degrees of convexity and/or concavity of the Phillips curve, where endogenous fluctuations arise, one is able to encounter various results that seem intuitively correct. Firstly, when the Central Bank pays attention essentially to inflation targeting, the inflation rate has a lower mean and is less volatile; secondly, when the degree of price stickiness is high, the inflation rate displays a larger mean and higher volatility (but this is sensitive to the values given to the parameters of the model); and thirdly, the higher the target value of the output gap chosen by the Central Bank, the higher is the inflation rate and its volatility.
We investigate the energetics of droplets sourced by the thermal fluctuations in a system undergoing a first-order transition. In particular, we confine our studies to two dimensions with explicit calulations in the plane and on the sphere. Using an isoperimetric inequality from the differential geometry literature and a theorem on the inequalitys saturation, we show how geometry informs the critical droplet size and shape. This inequality establishes a mean field result for nucleated droplets. We then study the effects of fluctuations on the interfaces of droplets in two dimensions, treating the droplet interface as a fluctuating line. We emphasize that care is needed in deriving the line curvature energy from the Landau-Ginzburg energy functional and in interpreting the scalings of the nucleation rate with the size of the droplet. We end with a comparison of nucleation in the plane and on a sphere.
We review the construction of the supersymmetric sigma model for unitary maps, using the color- flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum gra phs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization.
In the present work we investigate phase correlations by recourse to the Shannon entropy. Using theoretical arguments we show that the entropy provides an accurate measure of phase correlations in any dynamical system, in particular when dealing with a chaotic diffusion process. We apply this approach to different low dimensional maps in order to show that indeed the entropy is very sensitive to the presence of correlations among the successive values of angular variables, even when it is weak. Later on, we apply this approach to unveil strong correlations in the time evolution of the phases involved in the Arnolds Hamiltonian that lead to anomalous diffusion, particularly when the perturbation parameters are comparatively large. The obtained results allow us to discuss the validity of several approximations and assumptions usually introduced to derive a local diffusion coefficient in multidimensional near--integrable Hamiltonian systems, in particular the so-called reduced stochasticity approximation.
400 - M. Guasoni , P-Y. Bony , M. Gilles 2015
We report a simple and efficient all-optical polarization scrambler based on the nonlinear interaction in an optical fiber between a signal beam and its backward replica which is generated and amplified by a reflective loop. When the amplification fa ctor exceeds a certain threshold, the system exhibits a chaotic regime in which the evolution of the output polarization state of the signal becomes temporally chaotic and scrambled all over the surface of the Poincare sphere. We derive some analytical estimations for the scrambling performances of our device which are well confirmed by the experimental results. The polarization scrambler has been successfully tested on a single channel 10-Gbit/s On/Off Keying Telecom signal, reaching scrambling speeds up to 250-krad/s, as well as in a wavelength division multiplexing configuration. A different configuration based on a sequent cascade of polarization scramblers is also discussed numerically, which leads to an increase of the scrambling performances.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا