ترغب بنشر مسار تعليمي؟ اضغط هنا

Sigma models for quantum chaotic dynamics

349   0   0.0 ( 0 )
 نشر من قبل Fritz Haake
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We review the construction of the supersymmetric sigma model for unitary maps, using the color- flavor transformation. We then illustrate applications by three case studies in quantum chaos. In two of these cases, general Floquet maps and quantum graphs, we show that universal spectral fluctuations arise provided the pertinent classical dynamics are fully chaotic (ergodic and with decay rates sufficiently gapped away from zero). In the third case, the kicked rotor, we show how the existence of arbitrarily long-lived modes of excitation (diffusion) precludes universal fluctuations and entails quantum localization.



قيم البحث

اقرأ أيضاً

167 - Malcolm Hillebrand 2021
We investigate the chaotic behaviour of multiparticle systems, in particular DNA and graphene models, by applying methods of nonlinear dynamics. Using symplectic integration techniques, we present an extensive analysis of chaos in the Peyrard-Bishop- Dauxois (PBD) model of DNA. The chaoticity is quantified by the maximum Lyapunov exponent (mLE) across a spectrum of temperatures, and the effect of base pair (BP) disorder on the dynamics is studied. In addition to heterogeneity due to the ratio of adenine-thymine (AT) and guanine-cytosine (GC) BPs, the distribution of BPs in the sequence is analysed by introducing the alternation index $alpha$. An exact probability distribution for BP arrangements and $alpha$ is derived using Polya counting. The value of the mLE depends on the composition and arrangement of BPs in the strand, with a dependence on temperature. We probe regions of strong chaoticity using the deviation vector distribution, studying links between strongly nonlinear behaviour and the formation of bubbles. Randomly generated sequences and biological promoters are both studied. Further, properties of bubbles are analysed through molecular dynamics simulations. The distributions of bubble lifetimes and lengths are obtained, fitted with analytical expressions, and a physically justified threshold for considering a BP to be open is successfully implemented. In addition to DNA, we present analysis of the dynamical stability of a planar model of graphene, studying the mLE in bulk graphene as well as in graphene nanoribbons (GNRs). The stability of the material manifests in a very small mLE, with chaos being a slow process in graphene. For both armchair and zigzag edge GNRs, the mLE decreases with increasing width, asymptotically reaching the bulk behaviour. This dependence of the mLE on both energy density and ribbon width is fitted accurately with empirical expressions.
In four-dimensional N=1 Minkowski superspace, general nonlinear sigma models with four-dimensional target spaces may be realised in term of CCL (chiral and complex linear) dynamical variables which consist of a chiral scalar, a complex linear scalar and their conjugate superfields. Here we introduce CCL sigma models that are invariant under U(1) duality rotations exchanging the dynamical variables and their equations of motion. The Lagrangians of such sigma models prove to obey a partial differential equation that is analogous to the self-duality equation obeyed by U(1) duality invariant models for nonlinear electrodynamics. These sigma models are self-dual under a Legendre transformation that simultaneously dualises (i) the chiral multiplet into a complex linear one; and (ii) the complex linear multiplet into a chiral one. Any CCL sigma model possesses a dual formulation given in terms of two chiral multiplets. The U(1) duality invariance of the CCL sigma model proves to be equivalent, in the dual chiral formulation, to a manifest U(1) invariance rotating the two chiral scalars. Since the target space has a holomorphic Killing vector, the sigma model possesses a third formulation realised in terms of a chiral multiplet and a tensor multiplet. The family of U(1) duality invariant CCL sigma models includes a subset of N=2 supersymmetric theories. Their target spaces are hyper Kahler manifolds with a non-zero Killing vector field. In the case that the Killing vector field is triholomorphic, the sigma model admits a dual formulation in terms of a self-interacting off-shell N=2 tensor multiplet. We also identify a subset of CCL sigma models which are in a one-to-one correspondence with the U(1) duality invariant models for nonlinear electrodynamics. The target space isometry group for these sigma models contains a subgroup U(1) x U(1).
The transformation of a system from one state to another is often mediated by a bottleneck in the systems phase space. In chemistry these bottlenecks are known as emph{transition states} through which the system has to pass in order to evolve from re actants to products. The chemical reactions are usually associated with configurational changes where the reactants and products states correspond, e.g., to two different isomers or the undissociated and dissociated state of a molecule or cluster. In this letter we report on a new type of bottleneck which mediates emph{kinetic} rather than configurational changes. The phase space structures associated with such emph{kinetic transition states} and their dynamical implications are discussed for the rotational vibrational motion of a triatomic molecule. An outline of more general related phase space structures with important dynamical implications is given.
A gauge PDE is a natural notion which arises by abstracting what physicists call a local gauge field theory defined in terms of BV-BRST differential (not necessarily Lagrangian). We study supergeometry of gauge PDEs paying particular attention to glo bally well-defined definitions and equivalences of such objects. We demonstrate that a natural geometrical language to work with gauge PDEs is that of $Q$-bundles. In particular, we demonstrate that any gauge PDE can be embedded into a super-jet bundle of the $Q$-bundle. This gives a globally well-defined version of the so-called parent formulation. In the case of reparameterization-invariant systems, the parent formulation takes the form of an AKSZ-type sigma model with an infinite-dimensional target space.
Recently the phase space structures governing reaction dynamics in Hamiltonian systems have been identified and algorithms for their explicit construction have been developed. These phase space structures are induced by saddle type equilibrium points which are characteristic for reaction type dynamics. Their construction is based on a Poincar{e}-Birkhoff normal form. Using tools from the geometric theory of Hamiltonian systems and their reduction we show in this paper how the construction of these phase space structures can be generalized to the case of the relative equilibria of a rotational symmetry reduced $N$-body system. As rotations almost always play an important role in the reaction dynamics of molecules the approach presented in this paper is of great relevance for applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا