ﻻ يوجد ملخص باللغة العربية
The Blandford and K{o}nigl model of AGN jets predicts that the position of the apparent opaque jet base - the core - changes with frequency. This effect is observed with radio interferometry and is widely used to infer parameters and structure of the innermost jet regions. The position of the radio core is typically estimated by fitting a Gaussian template to the interferometric visibilities. This results in a model approximation error, i.e. a bias that can be detected and evaluated through simulations of observations with a realistic jet model. To assess the bias, we construct an artificial sample of sources based on the AGN jet model evaluated on a grid of the parameters derived from a real VLBI flux-density-limited sample and create simulated VLBI data sets at 2.3, 8.1 and 15.4 GHz. We found that the core position shifts from the true jet apex are generally overestimated. The bias is typically comparable to the core shift random error and can reach a factor of two for jets with large apparent opening angles. This observational bias depends mostly on the ratio between the true core shift and the image resolution. This implies that the magnetic field, the core radial distance and the jet speed inferred from the core shift measurements are overestimated. We present a method to account for the bias.
We studied the pc-scale core shift effect using radio light curves for three blazars, S5 0716+714, 3C 279 and BL Lacertae, which were monitored at five frequencies ($ u$) between 4.8 GHz and 36.8 GHz using the University of Michigan Radio Astronomica
The apparent position of jet base (core) in radio-loud active galactic nuclei changes with frequency because of synchrotron self-absorption. Studying this `core shift` effect enables us to reconstruct properties of the jet regions close to the centra
Opacity-driven shifts of the apparent VLBI core position with frequency (the core shift effect) probe physical conditions in the innermost parts of jets in active galactic nuclei. We present the first detailed investigation of this effect in the brig
We report on an ongoing effort to image active galactic nuclei simultaneously observed at 2.3 and 8.6 GHz in the framework of a long-term VLBI project RDV (Research and Development - VLBA) started in 1994 aiming to observe compact extragalactic radio
Observational studies of collimation in jets in active galactic nuclei (AGN) are a key to understanding their formation and acceleration processes. We have performed an automated search for jet shape transitions in a sample of 367 AGN using VLBA data