ﻻ يوجد ملخص باللغة العربية
We studied the pc-scale core shift effect using radio light curves for three blazars, S5 0716+714, 3C 279 and BL Lacertae, which were monitored at five frequencies ($ u$) between 4.8 GHz and 36.8 GHz using the University of Michigan Radio Astronomical Observatory (UMRAO), the Crimean Astrophysical Observatory (CrAO), and Metsahovi Radio Observatory for over 40 years. Flares were Gaussian fitted to derive time delays between observed frequencies for each flare ($Delta t$), peak amplitude ($A$), and their half width. Using $A propto u^{alpha}$ we infer $alpha$ in the range $-$16.67 to 2.41 and using $Delta t propto u^{1/k_r}$, we infer $k_r sim 1$, employed in the context of equipartition between magnetic and kinetic energy density for parameter estimation. From the estimated core position offset ($Omega_{r u}$) and the core radius ($r_{rm core}$), we infer that opacity model may not be valid in all cases. The mean magnetic field strength at 1 pc ($B_1$) and at the core ($B_{rm core}$), are in agreement with previous estimates. We apply the magnetically arrested disk model to estimate black hole spins in the range $0.15-0.9$ for these blazars, indicating that the model is consistent with expected accretion mode in such sources. The power law shaped power spectral density has slopes $-$1.3 to $-$2.3 and is interpreted in terms of multiple shocks or magnetic instabilities.
The apparent position of jet base (core) in radio-loud active galactic nuclei changes with frequency because of synchrotron self-absorption. Studying this `core shift` effect enables us to reconstruct properties of the jet regions close to the centra
Opacity-driven shifts of the apparent VLBI core position with frequency (the core shift effect) probe physical conditions in the innermost parts of jets in active galactic nuclei. We present the first detailed investigation of this effect in the brig
The Blandford and K{o}nigl model of AGN jets predicts that the position of the apparent opaque jet base - the core - changes with frequency. This effect is observed with radio interferometry and is widely used to infer parameters and structure of the
Estimates of magnetic field strength in relativistic jets of active galactic nuclei (AGN), obtained by measuring the frequency-dependent radio core location, imply that the total magnetic fluxes in those jets are consistent with the predictions of th
We report the first systematic search for blazars among broad-absorption-line (BAL) quasars. This is based on our intranight optical monitoring of a well-defined sample of 10 candidates selected on the criteria of a flat spectrum and an abnormally hi