ﻻ يوجد ملخص باللغة العربية
In the past few years, we observed a wide adoption of practical systems that use Automatic Speech Recognition (ASR) systems to improve human-machine interaction. Modern ASR systems are based on neural networks and prior research demonstrated that these systems are susceptible to adversarial examples, i.e., malicious audio inputs that lead to misclassification by the victims network during the systems run time. The research question if ASR systems are also vulnerable to data poisoning attacks is still unanswered. In such an attack, a manipulation happens during the training phase of the neural network: an adversary injects malicious inputs into the training set such that the neural networks integrity and performance are compromised. In this paper, we present the first data poisoning attack in the audio domain, called VENOMAVE. Prior work in the image domain demonstrated several types of data poisoning attacks, but they cannot be applied to the audio domain. The main challenge is that we need to attack a time series of inputs. To enforce a targeted misclassification in an ASR system, we need to carefully generate a specific sequence of disturbed inputs for the target utterance, which will eventually be decoded to the desired sequence of words. More specifically, the adversarial goal is to produce a series of misclassification tasks and in each of them, we need to poison the system to misrecognize each frame of the target file. To demonstrate the practical feasibility of our attack, we evaluate VENOMAVE on an ASR system that detects sequences of digits from 0 to 9. When poisoning only 0.94% of the dataset on average, we achieve an attack success rate of 83.33%. We conclude that data poisoning attacks against ASR systems represent a real threat that needs to be considered.
Targeted clean-label data poisoning is a type of adversarial attack on machine learning systems in which an adversary injects a few correctly-labeled, minimally-perturbed samples into the training data, causing a model to misclassify a particular tes
Data poisoning is an attack on machine learning models wherein the attacker adds examples to the training set to manipulate the behavior of the model at test time. This paper explores poisoning attacks on neural nets. The proposed attacks use clean-l
A recent source of concern for the security of neural networks is the emergence of clean-label dataset poisoning attacks, wherein correctly labeled poison samples are injected into the training dataset. While these poison samples look legitimate to t
Data poisoning -- the process by which an attacker takes control of a model by making imperceptible changes to a subset of the training data -- is an emerging threat in the context of neural networks. Existing attacks for data poisoning neural networ
In this paper we propose a novel defense approach against end-to-end adversarial attacks developed to fool advanced speech-to-text systems such as DeepSpeech and Lingvo. Unlike conventional defense approaches, the proposed approach does not directly