ﻻ يوجد ملخص باللغة العربية
In this paper we propose a novel defense approach against end-to-end adversarial attacks developed to fool advanced speech-to-text systems such as DeepSpeech and Lingvo. Unlike conventional defense approaches, the proposed approach does not directly employ low-level transformations such as autoencoding a given input signal aiming at removing potential adversarial perturbation. Instead of that, we find an optimal input vector for a class conditional generative adversarial network through minimizing the relative chordal distance adjustment between a given test input and the generator network. Then, we reconstruct the 1D signal from the synthesized spectrogram and the original phase information derived from the given input signal. Hence, this reconstruction does not add any extra noise to the signal and according to our experimental results, our defense-GAN considerably outperforms conventional defense algorithms both in terms of word error rate and sentence level recognition accuracy.
This paper introduces a defense approach against end-to-end adversarial attacks developed for cutting-edge speech-to-text systems. The proposed defense algorithm has four major steps. First, we represent speech signals with 2D spectrograms using the
We present an end-to-end method for transforming audio from one style to another. For the case of speech, by conditioning on speaker identities, we can train a single model to transform words spoken by multiple people into multiple target voices. For
End-to-end multi-talker speech recognition is an emerging research trend in the speech community due to its vast potential in applications such as conversation and meeting transcriptions. To the best of our knowledge, all existing research works are
Training Automatic Speech Recognition (ASR) models under federated learning (FL) settings has attracted a lot of attention recently. However, the FL scenarios often presented in the literature are artificial and fail to capture the complexity of real
Recently, the connectionist temporal classification (CTC) model coupled with recurrent (RNN) or convolutional neural networks (CNN), made it easier to train speech recognition systems in an end-to-end fashion. However in real-valued models, time fram