ترغب بنشر مسار تعليمي؟ اضغط هنا

The Language of Food during the Pandemic: Hints about the Dietary Effects of Covid-19

55   0   0.0 ( 0 )
 نشر من قبل Hoang Nguyen Hung Van
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the language of food on Twitter during the pandemic lockdown in the United States, focusing on the two month period of March 15 to May 15, 2020. Specifically, we analyze over770,000 tweets published during the lockdown and the equivalent period in the five previous years and highlight several worrying trends. First, we observe that during the lockdown there was a notable shift from mentions of healthy foods to unhealthy foods. Second, we show an increased pointwise mutual information of depression hashtags with food-related tweets posted during the lockdown and an increased association between depression hashtags and unhealthy foods, tobacco, and alcohol during the lockdown.



قيم البحث

اقرأ أيضاً

The declaration of COVID-19 as a pandemic has largely amplified the spread of related information on social media, such as Twitter, Facebook, and WeChat.Unlike the previous studies which focused on how to detect the misinformation or fake news relate d toCOVID-19, we investigate how the disease and information co-evolve in the population. We focus onCOVID-19and its information during the period when the disease was widely spread in China, i.e., from January 25th to March 24th, 2020. We first explore how the disease and information co-evolve via the spatial analysis of the two spreading processes. We visualize the geo-location of both disease and information at the province level and find that disease is more geo-localized compared to information. We find a high correlation between the disease and information data, and also people care about the spread only when it comes to their neighborhood. Regard to the content of the information, we find that positive messages are more negatively correlated with the disease compared to negative and neutral messages. Additionally, we introduce machine learning algorithms, i.e., linear regression and random forest, to further predict the number of infected using different disease spatial related and information-related characteristics. We obtain that the disease spatial related characteristics of nearby cities can help to improve the prediction accuracy. Meanwhile, information-related characteristics can also help to improve the prediction performance, but with a delay, i.e., the improvement comes from using, for instance, the number of messages 10 days ago, for disease prediction. The methodology proposed in this paper may shed light on new clues of emerging infections
Social scientists and psychologists take interest in understanding how people express emotions and sentiments when dealing with catastrophic events such as natural disasters, political unrest, and terrorism. The COVID-19 pandemic is a catastrophic ev ent that has raised a number of psychological issues such as depression given abrupt social changes and lack of employment. Advancements of deep learning-based language models have been promising for sentiment analysis with data from social networks such as Twitter. Given the situation with COVID-19 pandemic, different countries had different peaks where the rise and fall of new cases affected lock-downs which directly affected the economy and employment. During the rise of COVID-19 cases with stricter lock-downs, people have been expressing their sentiments in social media. This can provide a deep understanding of human psychology during catastrophic events. In this paper, we present a framework that employs deep learning-based language models via long short-term memory (LSTM) recurrent neural networks for sentiment analysis during the rise of novel COVID-19 cases in India. The framework features LSTM language model with a global vector embedding and state-of-art BERT language model. We review the sentiments expressed for selective months in 2020 which covers the first major peak of novel cases in India. Our framework utilises multi-label sentiment classification where more than one sentiment can be expressed at once. Our results indicate that the majority of the tweets have been positive with high levels of optimism during the rise of the novel COVID-19 cases and the number of tweets significantly lowered towards the peak. The predictions generally indicate that although the majority have been optimistic, a significant group of population has been annoyed towards the way the pandemic was handled by the authorities.
198 - Elise Jing , Yong-Yeol Ahn 2021
The COVID-19 pandemic is a global crisis that has been testing every society and exposing the critical role of local politics in crisis response. In the United States, there has been a strong partisan divide which resulted in polarization of individu al behaviors and divergent policy adoption across regions. Here, to better understand such divide, we characterize and compare the pandemic narratives of the Democratic and Republican politicians on social media using novel computational methods including computational framing analysis and semantic role analysis. By analyzing tweets from the politicians in the U.S., including the president, members of Congress, and state governors, we systematically uncover the contrasting narratives in terms of topics, frames, and agents that shape their narratives. We found that the Democrats narrative tends to be more concerned with the pandemic as well as financial and social support, while the Republicans discuss more about other political entities such as China. By using contrasting framing and semantic roles, the Democrats emphasize the governments role in responding to the pandemic, and the Republicans emphasize the roles of individuals and support for small businesses. Both parties narratives also include shout-outs to their followers and blaming of the other party. Our findings concretely expose the gaps in the elusive consensus between the two parties. Our methodologies may be applied to computationally study narratives in various domains.
New York has become one of the worst-affected COVID-19 hotspots and a pandemic epicenter due to the ongoing crisis. This paper identifies the impact of the pandemic and the effectiveness of government policies on human mobility by analyzing multiple datasets available at both macro and micro levels for the New York City. Using data sources related to population density, aggregated population mobility, public rail transit use, vehicle use, hotspot and non-hotspot movement patterns, and human activity agglomeration, we analyzed the inter-borough and intra-borough moment for New York City by aggregating the data at the borough level. We also assessed the internodal population movement amongst hotspot and non-hotspot points of interest for the month of March and April 2020. Results indicate a drop of about 80% in peoples mobility in the city, beginning in mid-March. The movement to and from Manhattan showed the most disruption for both public transit and road traffic. The city saw its first case on March 1, 2020, but disruptions in mobility can be seen only after the second week of March when the shelter in place orders was put in effect. Owing to people working from home and adhering to stay-at-home orders, Manhattan saw the largest disruption to both inter- and intra-borough movement. But the risk of spread of infection in Manhattan turned out to be high because of higher hotspot-linked movements. The stay-at-home restrictions also led to an increased population density in Brooklyn and Queens as people were not commuting to Manhattan. Insights obtained from this study would help policymakers better understand human behavior and their response to the news and governmental policies.
Following the onset of the COVID-19 pandemic and subsequent lockdowns, software engineers daily life was disrupted and abruptly forced into remote working from home. This change deeply impacted typical working routines, affecting both well-being and productivity. Moreover, this pandemic will have long-lasting effects in the software industry, with several tech companies allowing their employees to work from home indefinitely if they wish to do so. Therefore, it is crucial to analyze and understand how a typical working day looks like when working from home and how individual activities affect software developers well-being and productivity. We performed a two-wave longitudinal study involving almost 200 globally carefully selected software professionals, inferring daily activities with perceived well-being, productivity, and other relevant psychological and social variables. Results suggest that the time software engineers spent doing specific activities from home was similar when working in the office. However, we also found some significant mean differences. The amount of time developers spent on each activity was unrelated to their well-being, perceived productivity, and other variables. We conclude that working remotely is not per se a challenge for organizations or developers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا