ﻻ يوجد ملخص باللغة العربية
Social scientists and psychologists take interest in understanding how people express emotions and sentiments when dealing with catastrophic events such as natural disasters, political unrest, and terrorism. The COVID-19 pandemic is a catastrophic event that has raised a number of psychological issues such as depression given abrupt social changes and lack of employment. Advancements of deep learning-based language models have been promising for sentiment analysis with data from social networks such as Twitter. Given the situation with COVID-19 pandemic, different countries had different peaks where the rise and fall of new cases affected lock-downs which directly affected the economy and employment. During the rise of COVID-19 cases with stricter lock-downs, people have been expressing their sentiments in social media. This can provide a deep understanding of human psychology during catastrophic events. In this paper, we present a framework that employs deep learning-based language models via long short-term memory (LSTM) recurrent neural networks for sentiment analysis during the rise of novel COVID-19 cases in India. The framework features LSTM language model with a global vector embedding and state-of-art BERT language model. We review the sentiments expressed for selective months in 2020 which covers the first major peak of novel cases in India. Our framework utilises multi-label sentiment classification where more than one sentiment can be expressed at once. Our results indicate that the majority of the tweets have been positive with high levels of optimism during the rise of the novel COVID-19 cases and the number of tweets significantly lowered towards the peak. The predictions generally indicate that although the majority have been optimistic, a significant group of population has been annoyed towards the way the pandemic was handled by the authorities.
Towards the end of 2019, Wuhan experienced an outbreak of novel coronavirus, which soon spread all over the world, resulting in a deadly pandemic that infected millions of people around the globe. The government and public health agencies followed ma
We study the language of food on Twitter during the pandemic lockdown in the United States, focusing on the two month period of March 15 to May 15, 2020. Specifically, we analyze over770,000 tweets published during the lockdown and the equivalent per
We describe our straight-forward approach for Tasks 5 and 6 of 2021 Social Media Mining for Health Applications (SMM4H) shared tasks. Our system is based on fine-tuning Distill- BERT on each task, as well as first fine-tuning the model on the other t
The outbreak COVID-19 virus caused a significant impact on the health of people all over the world. Therefore, it is essential to have a piece of constant and accurate information about the disease with everyone. This paper describes our prediction s
Computational measures of linguistic diversity help us understand the linguistic landscape using digital language data. The contribution of this paper is to calibrate measures of linguistic diversity using restrictions on international travel resulti