ﻻ يوجد ملخص باللغة العربية
We present observations toward HOPS 383, the first known outbursting Class 0 protostar located within the Orion molecular cloud using ALMA, VLA, and SMA. The SMA observations reveal envelope scale continuum and molecular line emission surrounding HOPS 383 at 0.85 mm, 1.1 mm, and 1.3 mm. The images show that HCO$^+$ and H$^{13}$CO$^+$ peaks on or near the continuum, while N$_2$H$^+$ is reduced at the same position. This reflects the underlying chemistry where CO evaporating close to the protostar destroys N$_2$H$^+$ while forming HCO$^+$. We also observe the molecular outflow traced by $^{12}$CO ($J = 2 rightarrow 1$) and ($J = 3 rightarrow 2$). A disk is resolved in the ALMA 0.87 mm dust continuum, orthogonal to the outflow direction, with an apparent radius of $sim$62 AU. Radiative transfer modeling of the continuum gives disk masses of 0.02 M$_{odot}$ when fit to the ALMA visibilities. The models including VLA 8 mm data indicate that the disk mass could be up to a factor of 10 larger due to lower dust opacity at longer wavelengths. The disk temperature and surface density profiles from the modeling, and an assumed protostar mass of 0.5 M$_{odot}$ suggest that the Toomre $Q$ parameter $< 1$ before the outburst, making gravitational instability a viable mechanism to explain outbursts at an early age if the disk is sufficiently massive.
We report the dramatic mid-infrared brightening between 2004 and 2006 of HOPS 383, a deeply embedded protostar adjacent to NGC 1977 in Orion. By 2008, the source became a factor of 35 brighter at 24 microns with a brightness increase also apparent at
There is increasing evidence that episodic accretion is a common phenomenon in Young Stellar Objects (YSOs). Recently, the source HOPS 383 in Orion was reported to have a $times 35$ mid-infrared -- and bolometric -- luminosity increase between 2004 a
Context. Class 0 protostars represent the earliest evolutionary stage of solar-type stars, during which the majority of the system mass resides in an infalling envelope of gas and dust and is not yet in the central, nascent star. Although X-rays are
Sub-millimeter spectral line and continuum emission from the protoplanetary disks and envelopes of protostars are powerful probes of their structure, chemistry, and dynamics. Here we present a benchmark study of our modeling code, RadChemT, that for
Context: The protostellar envelopes, outflow and large-scale chemistry of Class~0 and Class~I objects have been well-studied, but while previous works have hinted at or found a few Keplerian disks at the Class~0 stage, it remains to be seen if their