ترغب بنشر مسار تعليمي؟ اضغط هنا

Pre- and Post-burst Radio Observations of the Class 0 Protostar HOPS 383 in Orion

150   0   0.0 ( 0 )
 نشر من قبل Roberto Galvan-Madrid
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

There is increasing evidence that episodic accretion is a common phenomenon in Young Stellar Objects (YSOs). Recently, the source HOPS 383 in Orion was reported to have a $times 35$ mid-infrared -- and bolometric -- luminosity increase between 2004 and 2008, constituting the first clear example of a class 0 YSO (a protostar) with a large accretion burst. The usual assumption that in YSOs accretion and ejection follow each other in time needs to be tested. Radio jets at centimeter wavelengths are often the only way of tracing the jets from embedded protostars. We searched the Very Large Array archive for the available observations of the radio counterpart of HOPS 383. The data show that the radio flux of HOPS 383 varies only mildly from January 1998 to December 2014, staying at the level of $sim 200$ to 300 $mu$Jy in the X band ($sim 9$ GHz), with a typical uncertainty of 10 to 20 $mu$Jy in each measurement. We interpret the absence of a radio burst as suggesting that accretion and ejection enhancements do not follow each other in time, at least not within timescales shorter than a few years. Time monitoring of more objects and specific predictions from simulations are needed to clarify the details of the connection betwen accretion and jets/winds in YSOs.



قيم البحث

اقرأ أيضاً

We report the dramatic mid-infrared brightening between 2004 and 2006 of HOPS 383, a deeply embedded protostar adjacent to NGC 1977 in Orion. By 2008, the source became a factor of 35 brighter at 24 microns with a brightness increase also apparent at 4.5 microns. The outburst is also detected in the submillimeter by comparing APEX/SABOCA to SCUBA data, and a scattered-light nebula appeared in NEWFIRM K_s imaging. The post-outburst spectral energy distribution indicates a Class 0 source with a dense envelope and a luminosity between 6 and 14 L_sun. Post-outburst time-series mid- and far-infrared photometry shows no long-term fading and variability at the 18% level between 2009 and 2012. HOPS 383 is the first outbursting Class 0 object discovered, pointing to the importance of episodic accretion at early stages in the star formation process. Its dramatic rise and lack of fading over a six-year period hint that it may be similar to FU Ori outbursts, although the luminosity appears to be significantly smaller than the canonical luminosities of such objects.
We present observations toward HOPS 383, the first known outbursting Class 0 protostar located within the Orion molecular cloud using ALMA, VLA, and SMA. The SMA observations reveal envelope scale continuum and molecular line emission surrounding HOP S 383 at 0.85 mm, 1.1 mm, and 1.3 mm. The images show that HCO$^+$ and H$^{13}$CO$^+$ peaks on or near the continuum, while N$_2$H$^+$ is reduced at the same position. This reflects the underlying chemistry where CO evaporating close to the protostar destroys N$_2$H$^+$ while forming HCO$^+$. We also observe the molecular outflow traced by $^{12}$CO ($J = 2 rightarrow 1$) and ($J = 3 rightarrow 2$). A disk is resolved in the ALMA 0.87 mm dust continuum, orthogonal to the outflow direction, with an apparent radius of $sim$62 AU. Radiative transfer modeling of the continuum gives disk masses of 0.02 M$_{odot}$ when fit to the ALMA visibilities. The models including VLA 8 mm data indicate that the disk mass could be up to a factor of 10 larger due to lower dust opacity at longer wavelengths. The disk temperature and surface density profiles from the modeling, and an assumed protostar mass of 0.5 M$_{odot}$ suggest that the Toomre $Q$ parameter $< 1$ before the outburst, making gravitational instability a viable mechanism to explain outbursts at an early age if the disk is sufficiently massive.
340 - Nicolas Grosso 2020
Context. Class 0 protostars represent the earliest evolutionary stage of solar-type stars, during which the majority of the system mass resides in an infalling envelope of gas and dust and is not yet in the central, nascent star. Although X-rays are a key signature of magnetic activity in more evolved protostars and young stars, whether such magnetic activity is present at the Class 0 stage is still debated. Aims. We aim to detect a bona fide Class 0 protostar in X-rays. Methods. We observed HOPS 383 in 2017 December in X-rays with the Chandra X-ray Observatory ($sim$84 ks) and in near-infrared imaging with the Southern Astrophysical Research telescope. Results. HOPS 383 was detected in X-rays during a powerful flare. This hard (E > 2 keV) X-ray counterpart was spatially coincident with the northwest 4 cm component of HOPS 383, which would be the base of the radio thermal jet launched by HOPS 383. The flare duration was $sim$3.3 h; at the peak, the X-ray luminosity reached $sim$4 x 1E31 erg s --1 in the 2-8 keV energy band, a level at least an order of magnitude larger than that of the undetected quiescent emission from HOPS 383. The X-ray flare spectrum is highly absorbed (NH $sim$ 7 x 1E23 cm --2), and it displays a 6.4 keV emission line with an equivalent width of $sim$1.1 keV, arising from neutral or low-ionization iron. Conclusions. The detection of a powerful X-ray flare from HOPS 383 constitutes direct proof that magnetic activity can be present at the earliest formative stages of solar-type stars.
Surveys with the Spitzer and Herschel space observatories are now enabling the discovery and characterization of large samples of protostars in nearby molecular clouds, providing the observational basis for a detailed understanding of star formation in diverse environments. We are pursuing this goal with the Herschel Orion Protostar Survey (HOPS), which targets 328 Spitzer-identified protostars in the Orion molecular clouds, the largest star-forming region in the nearest 500 pc. The sample encompasses all phases of protostellar evolution and a wide range of formation environments, from dense clusters to relative isolation. With a grid of radiative transfer models, we fit the 1-870 micron spectral energy distributions (SEDs) of the protostars to estimate their envelope densities, cavity opening angles, inclinations, and total luminosities. After correcting the bolometric luminosities and temperatures of the sources for foreground extinction and inclination, we find a spread of several orders of magnitude in luminosity at all evolutionary states, a constant median luminosity over the more evolved stages, and a possible deficit of high-inclination, rapidly infalling envelopes among the Spitzer-identified sample. We have detected over 100 new sources in the Herschel images; some of them may fill this deficit. We also report results from modeling the pre- and post-outburst 1-870 micron SEDs of V2775 Ori (HOPS 223), a known FU Orionis outburster in the sample. It is the least luminous FU Ori star with a protostellar envelope.
The degree to which the properties of protostars are affected by environment remains an open question. To investigate this, we look at the Orion A and B molecular clouds, home to most of the protostars within 500 pc. At ~400 pc, Orion is close enough to distinguish individual protostars across a range of environments in terms of both the stellar and gas projected densities. As part of the Herschel Orion Protostar Survey (HOPS), we used the Photodetector Array Camera and Spectrometer (PACS) to map 108 partially overlapping square fields with edge lengths of 5 arcmin or 8 arcmin and measure the 70 micron and 160 micron flux densities of 338 protostars within them. In this paper we examine how these flux densities and their ratio depend on evolutionary state and environment within the Orion complex. We show that Class 0 protostars occupy a region of the 70 micron flux density versus 160 micron to 70 micron flux density ratio diagram that is distinct from their more evolved counterparts. We then present evidence that the Integral-Shaped Filament (ISF) and Orion B contain protostars with more massive envelopes than those in the more sparsely populated LDN 1641 region. This can be interpreted as evidence for increasing star formation rates in the ISF and Orion B or as a tendency for more massive envelopes to be inherited from denser birth environments. We also provide technical details about the map-making and photometric procedures used in the HOPS program.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا