ترغب بنشر مسار تعليمي؟ اضغط هنا

4D ultrafast ultrasound imaging of naturally occurring shear waves in the human heart

73   0   0.0 ( 0 )
 نشر من قبل Clement Papadacci
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The objectives were to develop a novel three-dimensional technology for imaging naturally occurring shear wave (SW) propagation, demonstrate feasibility on human volunteers and quantify SW velocity in different propagation directions. Imaging of natural SWs generated by valve closures has emerged to obtain a direct measurement of cardiac stiffness. Recently, natural SW velocity was assessed in two dimensions on parasternal long axis view under the assumption of a propagation direction along the septum. However, in this approach the source localization and the complex three-dimensional propagation wave path was neglected making the speed estimation unreliable. High volume rate transthoracic acquisitions of the human left ventricle (1100 volume/s) was performed with a 4D ultrafast echocardiographic scanner. Four-dimensional tissue velocity cineloops enabled visualization of aortic and mitral valve closure waves. Energy and time of flight mapping allowed propagation path visualization and source localization, respectively. Velocities were quantified along different directions. Aortic and mitral valve closure SW velocities were assessed for the three volunteers with low standard deviation. Anisotropic propagation was also found suggesting the necessity of using a three-dimensional imaging approach. Different velocities were estimated for the three directions for the aortic (3.4$pm$0.1 m/s, 3.5$pm$0.3 m/s, 5.4$pm$0.7 m/s) and the mitral (2.8$pm$0.5 m/s, 2.9$pm$0.3 m/s, 4.6$pm$0.7 m/s) valve SWs. 4D ultrafast ultrasound alleviates the limitations of 2D ultrafast ultrasound for cardiac SW imaging based on natural SW propagations and enables a comprehensive measurement of cardiac stiffness. This technique could provide stiffness mapping of the left ventricle.



قيم البحث

اقرأ أيضاً

Purpose: To develop a MRI acquisition and reconstruction framework for volumetric cine visualisation of the fetal heart and great vessels in the presence of maternal and fetal motion. Methods: Four-dimensional depiction was achieved using a highly- accelerated multi-planar real-time balanced steady state free precession acquisition combined with retrospective image-domain techniques for motion correction, cardiac synchronisation and outlier rejection. The framework was evaluated and optimised using a numerical phantom, and evaluated in a study of 20 mid- to late-gestational age human fetal subjects. Reconstructed cine volumes were evaluated by experienced cardiologists and compared with matched ultrasound. A preliminary assessment of flow-sensitive reconstruction using the velocity information encoded in the phase of dynamic images is included. Results: Reconstructed cine volumes could be visualised in any 2D plane without the need for highly-specific scan plane prescription prior to acquisition or for maternal breath hold to minimise motion. Reconstruction was fully automated aside from user-specified masks of the fetal heart and chest. The framework proved robust when applied to fetal data and simulations confirmed that spatial and temporal features could be reliably recovered. Expert evaluation suggested the reconstructed volumes can be used for comprehensive assessment of the fetal heart, either as an adjunct to ultrasound or in combination with other MRI techniques. Conclusion: The proposed methods show promise as a framework for motion-compensated 4D assessment of the fetal heart and great vessels.
94 - Tal I. Sommer , Ori Katz 2021
We present an adaptation of the pixel-reassignment technique from confocal fluorescent microscopy to coherent ultrasound imaging. The method, Ultrasound Pixel-Reassignment (UPR), provides a resolution and signal to noise (SNR) improvement in ultrasou nd imaging by computationally reassigning off-focus signals acquired using traditional plane-wave compounding ultrasonography. We theoretically analyze the analogy between the optical and ultrasound implementations of pixel reassignment, and experimentally evaluate the imaging quality on tissue-mimicking acoustic phantoms. We demonstrate that UPR provides a $25%$ resolution improvement and a $3dB$ SNR improvement in in-vitro scans, without any change in hardware or acquisition scheme.
We provide first evidence that under certain conditions, 1/2-spin fermions may naturally behave like a Grover search, looking for topological defects in a material. The theoretical framework is that of discrete-time quantum walks (QW), i.e. local uni tary matrices that drive the evolution of a single particle on the lattice. Some QW are well-known to recover the $(2+1)$--dimensional Dirac equation in continuum limit, i.e. the free propagation of the 1/2-spin fermion. We study two such Dirac QW, one on the square grid and the other on a triangular grid reminiscent of graphene-like materials. The numerical simulations show that the walker localises around the defects in $O(sqrt{N})$ steps with probability $O(1/log{N})$, in line with previous QW search on the grid. The main advantage brought by those of this paper is that they could be implemented as `naturally occurring freely propagating particles over a surface featuring topological---without the need for a specific oracle step. From a quantum computing perspective, however, this hints at novel applications of QW search : instead of using them to look for `good solutions within the configuration space of a problem, we could use them to look for topological properties of the entire configuration space.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t he family of van der Waals materials that can be exfoliated to isolate 2D materials keeps growing, but most of them are synthetic. Interestingly, in nature plenty of naturally occurring van der Waals minerals can be found with a wide range of chemical compositions and crystal structures whose properties are mostly unexplored so far. This Perspective aims to provide an overview of different families of van der Waals minerals to stimulate their exploration in the 2D limit.
Morphological features of small vessels provide invaluable information regarding underlying tissue, especially in cancerous tumors. This paper introduces methods for obtaining quantitative morphological features from microvasculature images obtained by non-contrast ultrasound imaging. Those images suffer from the artifact that limit quantitative analysis of the vessel morphological features. In this paper we introduce processing steps to increase accuracy of the morphological assessment for quantitative vessel analysis in presence of these artifact. Specifically, artificats are reduced by additional filtering and vessel segments obtained by skeletonization of the regularized microvasculature images are further analyzed to satisfy additional constraints, such as diameter, and length of the vessel segments. Measurement of some morphological metrics, such as tortuosity, depends on preserving large vessel trunks that may be broken down into multiple branches. We propose two methods to address this problem. In the first method, small vessel segments are suppressed in the vessel filtering process via adjusting the size scale of the regularization. Hence, tortuosity of the large trunks can be more accurately estimated by preserving longer vessel segments. In the second approach, small connected vessel segments are removed by a combination of morphological erosion and dilation operations on the segmented vasculature images. These methods are tested on representative in vivo images of breast lesion microvasculature, and the outcomes are discussed. This paper provides a tool for quantification of microvasculature image from non-contrast ultrasound imaging may result in potential biomarkers for diagnosis of some diseases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا