ﻻ يوجد ملخص باللغة العربية
We provide first evidence that under certain conditions, 1/2-spin fermions may naturally behave like a Grover search, looking for topological defects in a material. The theoretical framework is that of discrete-time quantum walks (QW), i.e. local unitary matrices that drive the evolution of a single particle on the lattice. Some QW are well-known to recover the $(2+1)$--dimensional Dirac equation in continuum limit, i.e. the free propagation of the 1/2-spin fermion. We study two such Dirac QW, one on the square grid and the other on a triangular grid reminiscent of graphene-like materials. The numerical simulations show that the walker localises around the defects in $O(sqrt{N})$ steps with probability $O(1/log{N})$, in line with previous QW search on the grid. The main advantage brought by those of this paper is that they could be implemented as `naturally occurring freely propagating particles over a surface featuring topological---without the need for a specific oracle step. From a quantum computing perspective, however, this hints at novel applications of QW search : instead of using them to look for `good solutions within the configuration space of a problem, we could use them to look for topological properties of the entire configuration space.
The exfoliation of two naturally occurring van der Waals minerals, graphite and molybdenite, arouse an unprecedented level of interest by the scientific community and shaped a whole new field of research: 2D materials research. Several years later, t
The fabrication of van der Waals heterostructures, artificial materials assembled by individually stacking atomically thin (2D) materials, is one of the most promising directions in 2D materials research. Until now, the most widespread approach to st
A sequential application of the Grover algorithm to solve the iterated search problem has been improved by Ozhigov by parallelizing the application of the oracle. In this work a representation of the parallel Grover as dynamic system of inversion abo
We investigate the role of quantum coherence depletion (QCD) in Grover search algorithm (GA) by using several typical measures of quantum coherence and quantum correlations. By using the relative entropy of coherence measure ($mathcal{C}_r$), we show
Understanding language requires grasping not only the overtly stated content, but also making inferences about things that were left unsaid. These inferences include presuppositions, a phenomenon by which a listener learns about new information throu