ﻻ يوجد ملخص باللغة العربية
The efficacy of a drug depends on its binding affinity to the therapeutic target and pharmacokinetics. Deep learning (DL) has demonstrated remarkable progress in predicting drug efficacy. We develop MolDesigner, a human-in-the-loop web user-interface (UI), to assist drug developers leverage DL predictions to design more effective drugs. A developer can draw a drug molecule in the interface. In the backend, more than 17 state-of-the-art DL models generate predictions on important indices that are crucial for a drugs efficacy. Based on these predictions, drug developers can edit the drug molecule and reiterate until satisfaction. MolDesigner can make predictions in real-time with a latency of less than a second.
Recent development of quantitative myocardial blood flow (MBF) mapping allows direct evaluation of absolute myocardial perfusion, by computing pixel-wise flow maps. Clinical studies suggest quantitative evaluation would be more desirable for objectiv
Intercellular heterogeneity is a major obstacle to successful personalized medicine. Single-cell RNA sequencing (scRNA-seq) technology has enabled in-depth analysis of intercellular heterogeneity in various diseases. However, its full potentials for
COVID-19 clinical presentation and prognosis are highly variable, ranging from asymptomatic and paucisymptomatic cases to acute respiratory distress syndrome and multi-organ involvement. We developed a hybrid machine learning/deep learning model to c
This paper presents a method to identify substructures in NMR spectra of mixtures, specifically 2D spectra, using a bespoke image-based Convolutional Neural Network application. This is done using HSQC and HMBC spectra separately and in combination.
Current neuroimaging techniques provide paths to investigate the structure and function of the brain in vivo and have made great advances in understanding Alzheimers disease (AD). However, the group-level analyses prevalently used for investigation a