ﻻ يوجد ملخص باللغة العربية
Intercellular heterogeneity is a major obstacle to successful personalized medicine. Single-cell RNA sequencing (scRNA-seq) technology has enabled in-depth analysis of intercellular heterogeneity in various diseases. However, its full potentials for personalized medicine are yet to be reached. Towards this, we propose A Single-cell Guided pipeline to Aid Repurposing of Drugs (ASGARD). ASGARD can repurpose single drugs for each cell cluster and for multiple cell clusters at individual patient levels; it can also predict personalized drug combinations to address the intercellular heterogeneity within each patient. We tested ASGARD on three independent datasets, including advanced metastatic breast cancer, acute lymphoblastic leukemia, and coronavirus disease 2019 (COVID-19). On single-drug therapy, ASGARD shows significantly better average accuracy (AUC=0.95) compared to two other single-cell pipelines (AUC 0.69 and 0.57) and two other bulk-cell-based drug repurposing methods (AUC 0.80 and 0.75). The top-ranked drugs, such as fulvestrant and neratinib for breast cancer, tretinoin and vorinostat for leukemia, and chloroquine and enalapril for severe COVID19, are either approved by FDA or in clinical trials treating corresponding diseases. In conclusion, ASGARD is a promising pipeline guided by single-cell RNA-seq data, for repurposing personalized drugs and drug combinations. ASGARD is free for academic use at https://github.com/lanagarmire/ASGARD.
The ability to quickly detect transient sources in optical images and trigger multi-wavelength follow up is key for the discovery of fast transients. These include events rare and difficult to detect such as kilonovae, supernova shock breakout, and o
The development of single-cell technologies provides the opportunity to identify new cellular states and reconstruct novel cell-to-cell relationships. Applications range from understanding the transcriptional and epigenetic processes involved in meta
The efficacy of a drug depends on its binding affinity to the therapeutic target and pharmacokinetics. Deep learning (DL) has demonstrated remarkable progress in predicting drug efficacy. We develop MolDesigner, a human-in-the-loop web user-interface
Mathematical methods of information theory constitute essential tools to describe how stimuli are encoded in activities of signaling effectors. Exploring the information-theoretic perspective, however, remains conceptually, experimentally and computa
Despite substantial potential to transform bioscience, medicine, and bioengineering, whole-cell models remain elusive. One of the biggest challenges to whole-cell models is assembling the large and diverse array of data needed to model an entire cell