ﻻ يوجد ملخص باللغة العربية
We theoretically investigate the emergence of non-hermitian physics at the heterojunction of a type-II Dirac semi-metal (DSM) and a dirty superconductor (DSC). The non-hermiticity is introduced in the DSM through the self-energy term incorporated via the dirtiness of the superconducting material. This causes the spectra of the effective Hamiltonian to become complex, which gives rise to the appearance of the exceptional points (EPs). This complex self energy, apart from having a frequency dependence, also acquires spatial dependence as well, which is unique and can provide interesting effects related to non-hermitian physics in spectral function analysis. At an appropriate distance from the normal metal-superconductor junction of the DSC, non-hermitian degeneracies appear and a single Dirac point splits into two EPs. In the spectral function analysis, apart from the EPs, a Fermi-arc like structure also emerges, which connects the two degeneracies (EPs). The results discussed here are distinctive and possibly can be realized in spectroscopy measurements.
Non-Hermitian systems distinguish themselves from Hermitian systems by exhibiting a phase transition point called an exceptional point (EP), which is the point at which two eigenstates coalesce under a system parameter variation. Many interesting EP
A pair of anisotropic exceptional points (EPs) of arbitrary order are found in a class of non-Hermitian random systems with asymmetric hoppings. Both eigenvalues and eigenvectors exhibit distinct behaviors when these anisotropic EPs are approached fr
The electronic structure of a crystalline solid is largely determined by its lattice structure. Recent advances in van der Waals solids, artificial crystals with controlled stacking of two-dimensional (2D) atomic films, have enabled the creation of m
Topological nodal-line semimetals with exotic quantum properties are characterized by symmetry-protected line-contact bulk band crossings in the momentum space. However, in most of identified topological nodal-line compounds, these topological non-tr
We uncover the existence of Dirac and exceptional points in waveguides made of anisotropic materials, and study the transition between them. Dirac points in the dispersion diagram appear at propagation directions where the matrix describing the eigen