ﻻ يوجد ملخص باللغة العربية
We uncover the existence of Dirac and exceptional points in waveguides made of anisotropic materials, and study the transition between them. Dirac points in the dispersion diagram appear at propagation directions where the matrix describing the eigenvalue problem for bound states splits into two blocks, sorting the eigenmodes either by polarization or by inner mode symmetry. Introducing a non-Hermitian channel via a suitable leakage mechanism causes the Dirac points to transform into exceptional points connected by a Fermi arc. The exceptional points arise as improper hybrid leaky states and, importantly, are found to occur always out of the anisotropy symmetry planes.
Planar microcavities allow the control and manipulation of spin-polarization, manifested in phenomena like the optical spin Hall effect due to the intrinsic polarization mode splitting. Here, we study a transparent microcavity with broken rotational
We demonstrate theoretically the electric tunability due to coalescence of exceptional points in PT-symmetric waveguides bounded by imperfect conductive layers. Owing to the competition effect of multimode interaction, multiple exceptional points and
A pair of anisotropic exceptional points (EPs) of arbitrary order are found in a class of non-Hermitian random systems with asymmetric hoppings. Both eigenvalues and eigenvectors exhibit distinct behaviors when these anisotropic EPs are approached fr
The finite gain-bandwidth product is a fundamental figure of merit that restricts the operation of standard optical amplifiers. In microcavity setups, this becomes a serious problem due to the narrow bandwidth of the device. Here we introduce a new d
We present a novel approach and a theoretical framework for generating high order exceptional points of degeneracy (EPD) in photonic structures based on periodic coupled resonators optical waveguides (CROWs). Such EPDs involve the coalescence of Floq