ﻻ يوجد ملخص باللغة العربية
In 2016, while studying restricted sums of integral squares, Sun posed the following conjecture: Every positive integer $n$ can be written as $x^2+y^2+z^2+w^2$ $(x,y,z,winmathbb{N}={0,1,cdots})$ with $x+3y$ a square. Meanwhile, he also conjectured that for each positive integer $n$ there exist integers $x,y,z,w$ such that $n=x^2+y^2+z^2+w^2$ and $x+3yin{4^k:kinmathbb{N}}$. In this paper, we confirm these conjectures via some arithmetic theory of ternary quadratic forms.
When the sequences of squares of primes is coloured with $K$ colours, where $K geq 1$ is an integer, let $s(K)$ be the smallest integer such that each sufficiently large integer can be written as a sum of no more than $s(K)$ squares of primes, all of
Recently, Ni and Pan proved a $q$-congruence on certain sums involving central $q$-binomial coefficients, which was conjectured by Guo. In this paper, we give a generalization of this $q$-congruence and confirm another $q$-congruence, also conjecture
We determine primitive solutions to the equation $(x-r)^2 + x^2 + (x+r)^2 = y^n$ for $1 le r le 5,000$, making use of a factorization argument and the Primitive Divisors Theorem due to Bilu, Hanrot and Voutier.
We study sign changes in the sequence ${ A(n) : n = c^2 + d^2 }$, where $A(n)$ are the coefficients of a holomorphic cuspidal Hecke eigenform. After proving a variant of an axiomatization for detecting and quantifying sign changes introduced by Meher
The Macaulay2 package SumsOfSquares decomposes polynomials as sums of squares. It is based on methods to rationalize sum-of-squares decompositions due to Parrilo and Peyrl. The package features a data type for sums-of-squares polynomials, support for