ﻻ يوجد ملخص باللغة العربية
We give a uniform description of resolvents and complex powers of elliptic semiclassical cone differential operators as the semiclassical parameter $h$ tends to $0$. An example of such an operator is the shifted semiclassical Laplacian $h^2Delta_g+1$ on a manifold $(X, g)$ of dimension $ngeq 3$ with conic singularities. Our approach is constructive and based on techniques from geometric microlocal analysis: we construct the Schwartz kernels of resolvents and complex powers as conormal distributions on a suitable resolution of the space $[0,1)_htimes Xtimes X$ of $h$-dependent integral kernels; the construction of complex powers relies on a calculus with a second semiclassical parameter. As an application, we characterize the domains of $(h^2Delta_g+1)^{w/2}$ for $mathrm{Re},win(-frac{n}{2},frac{n}{2})$ and use this to prove the propagation of semiclassical regularity through a cone point on a range of weighted semiclassical function spaces.
The compression of the resolvent of a non-self-adjoint Schrodinger operator $-Delta+V$ onto a subdomain $Omegasubsetmathbb R^n$ is expressed in a Krein-Naimark type formula, where the Dirichlet realization on $Omega$, the Dirichlet-to-Neumann maps, a
We consider optimization problems for cost functionals which depend on the negative spectrum of Schrodinger operators of the form $-Delta+V(x)$, where $V$ is a potential, with prescribed compact support, which has to be determined. Under suitable ass
We consider general second order uniformly elliptic operators subject to homogeneous boundary conditions on open sets $phi (Omega)$ parametrized by Lipschitz homeomorphisms $phi $ defined on a fixed reference domain $Omega$. Given two open sets $phi
We study a family of modules over Kac-Moody algebras realized in multi-valued functions on a flag manifold and find integral representations for intertwining operators acting on these modules. These intertwiners are related to some expressions involv