ﻻ يوجد ملخص باللغة العربية
We study a family of modules over Kac-Moody algebras realized in multi-valued functions on a flag manifold and find integral representations for intertwining operators acting on these modules. These intertwiners are related to some expressions involving complex powers of Lie algebra generators. When applied to affine Lie algebras, these expressions give integral formulas for correlation functions with values in not necessarily highest weight modules. We write related formulas out in an explicit form in the case of $hat{gtsl_{2}}$. The latter formulas admit q-deformation producing an integral representation of q-correlation functions. We also discuss a relation of complex powers of Lie algebra (quantum group) generators and Casimir operators to ($q-$)special functions.
We set up a framework for discussing `$q$-analogues of the usual covariant differential operators for hermitian symmetric spaces. This turns out to be directly related to the deformation quantization associated to quadratic algebras satisfying certain conditions introduced by Procesi and De Concini.
We give a uniform description of resolvents and complex powers of elliptic semiclassical cone differential operators as the semiclassical parameter $h$ tends to $0$. An example of such an operator is the shifted semiclassical Laplacian $h^2Delta_g+1$
We define a new notion of fiber-wise linear differential operator on the total space of a vector bundle $E$. Our main result is that fiber-wise linear differential operators on $E$ are equivalent to (polynomial) derivations of an appropriate line bun
We introduce a factorized difference operator L(u) annihilated by the Frenkel-Reshetikhin screening operator for the quantum affine algebra U_q(C^{(1)}_n). We identify the coefficients of L(u) with the fundamental q-characters, and establish a number
For loop integrals, the standard method is reduction. A well-known reduction method for one-loop integrals is the Passarino-Veltman reduction. Inspired by the recent paper [1] where the tadpole reduction coefficients have been solved, in this paper w