ﻻ يوجد ملخص باللغة العربية
We consider the usual Einstein-Hilbert action in a Metric-Affine setup and in the presence of a Perfect Hyperfluid. In order to decode the role of shear hypermomentum, we impose vanishing spin and dilation parts on the sources and allow only for non-vanishing shear. We then consider an FLRW background and derive the generalized Friedmann equations in the presence of shear hypermomentum. By providing one equation of state among the shear variables we study the cases for which shear has an accelerating/decelerating effect on Universes expansion. In particular, we see that shear offers a possibility to prevent the initial singularity formation. We also provide some exact solutions in the shear dominated era and discuss the physical significance of the shear current.
In arXiv:gr-qc/9504004 it was shown that the Einstein equation can be derived as a local constitutive equation for an equilibrium spacetime thermodynamics. More recently, in the attempt to extend the same approach to the case of $f(R)$ theories of gr
In this thesis, we discuss several instances in which non-linear behaviour affects cosmological evolution in the early Universe. We begin by reviewing the standard cosmological model and the tools used to understand it theoretically and to compute it
This Thesis is devoted to the study of Metric-Affine Theories of Gravity and Applications to Cosmology. The thesis is organized as follows. In the first Chapter we define the various geometrical quantities that characterize a non-Riemannian geometry.
Based upon the holographic principle, Jacobson demonstrated that the spacetime can be viewed as a gas of atoms with a related entropy given by the Bekenstein-Hawking formula. Following this argument, Friedmann equations can be derived by using Clausi
Spacetime and internal symmetries can be used to severely restrict the form of the equations for the fundamental laws of physics. The success of this approach in the context of general relativity and particle physics motivates the conjecture that sym