ﻻ يوجد ملخص باللغة العربية
Motivated by the desire to understand the leading order nonlinear gravitational wave interactions around arbitrarily rapidly rotating Kerr black holes, we describe a numerical code designed to compute second order vacuum perturbations on such spacetimes. A general discussion of the formalism we use is presented in (arXiv:2008.11770); here we show how we numerically implement that formalism with a particular choice of coordinates and tetrad conditions, and give example results for black holes with dimensionless spin parameters $a=0.7$ and $a=0.998$. We first solve the Teukolsky equation for the linearly perturbed Weyl scalar $Psi_4^{(1)}$, followed by direct reconstruction of the spacetime metric from $Psi_4^{(1)}$, and then solve for the dynamics of the second order perturbed Weyl scalar $Psi_4^{(2)}$. This code is a first step toward a more general purpose second order code, and we outline how our basic approach could be further developed to address current questions of interest, including extending the analysis of ringdown in black hole mergers to before the linear regime, exploring gravitational wave turbulence around near-extremal Kerr black holes, and studying the physics of extreme mass ratio inspiral.
Motivated by gravitational wave observations of binary black hole mergers, we present a procedure to compute the leading order nonlinear gravitational wave interactions around a Kerr black hole. We describe the formalism used to derive the equations
We consider the axisymmetric, linear perturbations of Kerr-Newman black holes, allowing for arbitrarily large (but subextremal) angular momentum and electric charge. By exploiting the famous Carter-Robinson identities, developed previously for the pr
We numerically solve the Klein-Gordon equation at second order in cosmological perturbation theory in closed form for a single scalar field, describing the method employed in detail. We use the slow-roll version of the second order source term and ar
The open question of whether a Kerr black hole can become tidally deformed or not has profound implications for fundamental physics and gravitational-wave astronomy. We consider a Kerr black hole embedded in a weak and slowly varying, but otherwise a
We investigate the first law of thermodynamics in the stationary axisymmetric configurations composed of two Kerr black holes separated by a massless strut. Our analysis employs the recent results obtained for the extended double-Kerr solution and fo