ﻻ يوجد ملخص باللغة العربية
Motivated by gravitational wave observations of binary black hole mergers, we present a procedure to compute the leading order nonlinear gravitational wave interactions around a Kerr black hole. We describe the formalism used to derive the equations for second order perturbations. We develop a procedure that allows us to reconstruct the first order metric perturbation solely from knowledge of the solution to the first order Teukolsky equation, without the need of Hertz potentials. Finally, we illustrate this metric reconstruction procedure in the asymptotic limit for the first order quasi-normal modes of Kerr. In a companion paper, we present a numerical implementation of these ideas.
Motivated by the desire to understand the leading order nonlinear gravitational wave interactions around arbitrarily rapidly rotating Kerr black holes, we describe a numerical code designed to compute second order vacuum perturbations on such spaceti
Vacuum perturbations of the Kerr metric can be reconstructed from the corresponding perturbation in either of the two Weyl scalars $psi_0$ or $psi_4$, using a procedure described by Chrzanowski and others in the 1970s. More recent work, motivated wit
We consider the axisymmetric, linear perturbations of Kerr-Newman black holes, allowing for arbitrarily large (but subextremal) angular momentum and electric charge. By exploiting the famous Carter-Robinson identities, developed previously for the pr
The open question of whether a Kerr black hole can become tidally deformed or not has profound implications for fundamental physics and gravitational-wave astronomy. We consider a Kerr black hole embedded in a weak and slowly varying, but otherwise a
We investigate the first law of thermodynamics in the stationary axisymmetric configurations composed of two Kerr black holes separated by a massless strut. Our analysis employs the recent results obtained for the extended double-Kerr solution and fo