ﻻ يوجد ملخص باللغة العربية
Authorship identification tasks, which rely heavily on linguistic styles, have always been an important part of Natural Language Understanding (NLU) research. While other tasks based on linguistic style understanding benefit from deep learning methods, these methods have not behaved as well as traditional machine learning methods in many authorship-based tasks. With these tasks becoming more and more challenging, however, traditional machine learning methods based on handcrafted feature sets are already approaching their performance limits. Thus, in order to inspire future applications of deep learning methods in authorship-based tasks in ways that benefit the extraction of stylistic features, we survey authorship-based tasks and other tasks related to writing style understanding. We first describe our survey results on the current state of research in both sets of tasks and summarize existing achievements and problems in authorship-related tasks. We then describe outstanding methods in style-related tasks in general and analyze how they are used in combination in the top-performing models. We are optimistic about the applicability of these models to authorship-based tasks and hope our survey will help advance research in this field.
Authorship identification is a process in which the author of a text is identified. Most known literary texts can easily be attributed to a certain author because they are, for example, signed. Yet sometimes we find unfinished pieces of work or a who
We present our approach for computer-aided social media text authorship attribution based on recent advances in short text authorship verification. We use various natural language techniques to create word-level and character-level models that act as
Authorship attribution (AA), which is the task of finding the owner of a given text, is an important and widely studied research topic with many applications. Recent works have shown that deep learning methods could achieve significant accuracy impro
Stylometry can be used to profile or deanonymize authors against their will based on writing style. Style transfer provides a defence. Current techniques typically use either encoder-decoder architectures or rule-based algorithms. Crucially, style tr
Text style transfer (TST) is an important task in natural language generation (NLG), which aims to control certain attributes in the generated text, such as politeness, emotion, humor, and many others. It has a long history in the field of natural la