ﻻ يوجد ملخص باللغة العربية
We present our approach for computer-aided social media text authorship attribution based on recent advances in short text authorship verification. We use various natural language techniques to create word-level and character-level models that act as hidden layers to simulate a simple neural network. The choice of word-level and character-level models in each layer was informed through validation performance. The output layer of our system uses an unweighted majority vote vector to arrive at a conclusion. We also considered writing bias in social media posts while collecting our training dataset to increase system robustness. Our system achieved a precision, recall, and F-measure of 0.82, 0.926 and 0.869 respectively.
We introduce a new approach to tackle the problem of offensive language in online social media. Our approach uses unsupervised text style transfer to translate offensive sentences into non-offensive ones. We propose a new method for training encoder-
Stylometry can be used to profile or deanonymize authors against their will based on writing style. Style transfer provides a defence. Current techniques typically use either encoder-decoder architectures or rule-based algorithms. Crucially, style tr
Authorship identification tasks, which rely heavily on linguistic styles, have always been an important part of Natural Language Understanding (NLU) research. While other tasks based on linguistic style understanding benefit from deep learning method
Parody is a figurative device used to imitate an entity for comedic or critical purposes and represents a widespread phenomenon in social media through many popular parody accounts. In this paper, we present the first computational study of parody. W
Emotion recognition or emotion prediction is a higher approach or a special case of sentiment analysis. In this task, the result is not produced in terms of either polarity: positive or negative or in the form of rating (from 1 to 5) but of a more de