ﻻ يوجد ملخص باللغة العربية
We present a theory describing the superconducting (SC) interaction of Dirac electrons in a quasi-two-dimensional system consisting of a stack of N planes. The occurrence of a SC phase is investigated both at T = 0 and T 5 0. At T = 0, we find a quantum phase transition connecting the normal and SC phases. Our theory qualitatively reproduces the SC phase transition occurring in the underdoped regime of the high-Tc cuprates. This fact points to the possible relevance of Dirac electrons in the mechanism of high-Tc superconductivity.
We study the effects of an external magnetic field on thensuperconducting phase diagram of a quasi-two-dimensional system of Dirac electrons at an arbitrary temperature. At zero temperature, there is a quantum phase transition connecting a normal and
We re-examine the experimental results for the magnetic response function $chi({bf q}, E, T)$, for ${bf q}$ around the anti-ferromagnetic vectors ${bf Q}$, in the quantum-critical region, obtained by inelastic neutron scattering, on an Fe-based super
In this paper we discuss the N$acute{e}$el and Kekul$acute{e}$ valence bond solids quantum criticality in graphene Dirac semimetal. Considering the quartic four-fermion interaction $g(bar{psi}_iGamma_{ij}psi_j)^2$ that contains spin,valley, and subla
Changing the interactions between particles in an ensemble-by varying the temperature or pressure, for example-can lead to phase transitions whose critical behaviour depends on the collective nature of the many-body system. Despite the diversity of i
In a recent publication [M. B. Stone et al., New Journal of Physics 9, 31 (2007)] a Renormalized Classical 2D (RC) phase has been reported in a quasi-two-dimensional quantum antiferromagnet PHCC. Its key signature is a sharp cusp-like feature in the