ﻻ يوجد ملخص باللغة العربية
Few-mode fiber is a significant component of free-space optical communication at the receiver to obtain achievable high coupling efficiency. A theoretical coupling model from the free-space optical communication link to a few-mode fiber is proposed based on a scale-adapted set of Laguerre-Gaussian modes. It is found that the coupling efficiency of various modes behaves differently in the presence of atmospheric turbulence or random jitter. Based on this model, the optimal coupling geometry parameter is obtained to maximize the coupling efficiency of the selected mode of few-mode fiber. The communication performance with random jitter is investigated. It is shown that the few-mode fiber has better bit-error rate performance than single-mode fiber, especially in high signal-to-noise ratio regimes.
We experimentally isolate and directly observe multimode solitons in few-mode graded-index fiber. By varying the input energy and modal composition of the launched pulse, we observe a continuous variation of multimode solitons with different spatiote
Future spacecraft will require a paradigm shift in the way the information is transmitted due to the continuous increase in the amount of data requiring space links. Current radiofrequency-based communication systems impose a bottleneck in the volume
Free-space optical communication is a promising means to establish versatile, secure and high-bandwidth communication for many critical point-to-point applications. While the spatial modes of light offer an additional degree of freedom to increase th
In this letter, an energetic and highly efficient dispersive wave (DW) generation at 200 nm has been numerically demonstrated by selectively exciting LP$_{02}$-like mode in a 10 bar Ar-filled hollow-core anti-resonant fiber pumping in the anomalous d
We investigate the communication performance of a few-mode EDFA based all-optical relaying system for atmospheric channels in this paper. A dual-hop free space optical communication model based on the relay with two-mode EDFA is derived. The BER perf