ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of Multimode Solitons in Few-Mode Fiber

146   0   0.0 ( 0 )
 نشر من قبل Zimu Zhu
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We experimentally isolate and directly observe multimode solitons in few-mode graded-index fiber. By varying the input energy and modal composition of the launched pulse, we observe a continuous variation of multimode solitons with different spatiotemporal properties. They exhibit an energy-volume relation that is distinct from those of single-mode and fully spatiotemporal solitons.



قيم البحث

اقرأ أيضاً

Solitons are non-dispersing localized waves that occur in diverse physical settings. A variety of optical solitons have been observed, b
We introduce a mechanism of stable spatiotemporal soliton formation in a multimode fiber laser. This is based on spatially graded dissipation, leading to distributed Kerr-lens mode-locking. Our analysis involves solutions of a generalized dissipative Gross-Pitaevskii equation. This equation has a broad range of applications in nonlinear physics, including nonlinear optics, spatiotemporal patterns formation, plasma dynamics, and Bose-Einstein condensates. We demonstrate that careful control of dissipative and non-dissipative physical mechanisms results in the self-emergence of stable (2+1)-dimensional dissipative solitons. Achieving such a regime does not require the presence of any additional dissipative nonlinearities, such a mode-locker in a laser, or inelastic scattering in a Bose-Einstein condensate. Our method allows for stable energy (or mass) harvesting by coherent localized structures, such as ultrashort laser pulses or Bose-Einstein condensates.
A laser is based on the electromagnetic modes of its resonator, which provides the feedback required for oscillation. Enormous progress has been made in controlling the interactions of longitudinal modes in lasers with a single transverse mode. For e xample, the field of ultrafast science has been built on lasers that lock many longitudinal modes together to form ultrashort light pulses. However, coherent superposition of many longitudinal and transverse modes in a laser has received little attention. The multitude of disparate frequency spacings, strong dispersions, and complex nonlinear interactions among modes greatly favor decoherence over the emergence of order. Here we report the locking of multiple transverse and longitudinal modes in fiber lasers to generate ultrafast spatiotemporal pulses. We construct multimode fiber cavities using graded-index multimode fiber (GRIN MMF). This causes spatial and longitudinal mode dispersions to be comparable. These dispersions are counteracted by strong intracavity spatial and spectral filtering. Under these conditions, we achieve spatiotemporal, or multimode (MM), mode-locking. A variety of other multimode nonlinear dynamical processes can also be observed. Multimode fiber lasers thus open new directions in studies of three-dimensional nonlinear wave propagation. Lasers that generate controllable spatiotemporal fields, with orders-of-magnitude increases in peak power over existing designs, should be possible. These should increase laser utility in many established applications and facilitate new ones.
Dissipative solitons are remarkable localized states of a physical system that arise from the dynamical balance between nonlinearity, dispersion and environmental energy exchange. They are the most universal form of soliton that can exist in nature, and are seen in far-from-equilibrium systems in many fields including chemistry, biology, and physics. There has been particular interest in studying their properties in mode-locked lasers producing ultrashort light pulses, but experiments have been limited by the lack of convenient measurement techniques able to track the soliton evolution in real-time. Here, we use dispersive Fourier transform and time lens measurements to simultaneously measure real-time spectral and temporal evolution of dissipative solitons in a fiber laser as the turn-on dynamics pass through a transient unstable regime with complex break-up and collision dynamics before stabilizing to a regular mode-locked pulse train. Our measurements enable reconstruction of the soliton amplitude and phase and calculation of the corresponding complex-valued eigenvalue spectrum to provide further physical insight. These findings are significant in showing how real-time measurements can provide new perspectives into the ultrafast transient dynamics of complex systems.
278 - L. M. Zhao , D. Y. Tang , 2009
We report on the observation of bound states of gain-guided solitons (GGSs) in a dispersion-managed erbium-doped fiber laser operating in the normal net cavity dispersion regime. Despite of the fact that the GGS is a chirped soliton and there is stro ng pulse stretching and compression along the cavity in the laser, the bound solitons observed have a fixed pulse separation, which is invariant to the pump strength change. Numerical simulation confirmed the experimental observations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا