ﻻ يوجد ملخص باللغة العربية
This paper aims to understand and improve the utility of the dropout operation from the perspective of game-theoretic interactions. We prove that dropout can suppress the strength of interactions between input variables of deep neural networks (DNNs). The theoretic proof is also verified by various experiments. Furthermore, we find that such interactions were strongly related to the over-fitting problem in deep learning. Thus, the utility of dropout can be regarded as decreasing interactions to alleviate the significance of over-fitting. Based on this understanding, we propose an interaction loss to further improve the utility of dropout. Experimental results have shown that the interaction loss can effectively improve the utility of dropout and boost the performance of DNNs.
One popular hypothesis of neural network generalization is that the flat local minima of loss surface in parameter space leads to good generalization. However, we demonstrate that loss surface in parameter space has no obvious relationship with gener
Model-based reinforcement learning (MBRL) has recently gained immense interest due to its potential for sample efficiency and ability to incorporate off-policy data. However, designing stable and efficient MBRL algorithms using rich function approxim
This paper aims to explain adversarial attacks in terms of how adversarial perturbations contribute to the attacking task. We estimate attributions of different image regions to the decrease of the attacking cost based on the Shapley value. We define
Graph-based subspace clustering methods have exhibited promising performance. However, they still suffer some of these drawbacks: encounter the expensive time overhead, fail in exploring the explicit clusters, and cannot generalize to unseen data poi
This paper aims to explain deep neural networks (DNNs) from the perspective of multivariate interactions. In this paper, we define and quantify the significance of interactions among multiple input variables of the DNN. Input variables with strong in