ﻻ يوجد ملخص باللغة العربية
One popular hypothesis of neural network generalization is that the flat local minima of loss surface in parameter space leads to good generalization. However, we demonstrate that loss surface in parameter space has no obvious relationship with generalization, especially under adversarial settings. Through visualizing decision surfaces in both parameter space and input space, we instead show that the geometry property of decision surface in input space correlates well with the adversarial robustness. We then propose an adversarial robustness indicator, which can evaluate a neural networks intrinsic robustness property without testing its accuracy under adversarial attacks. Guided by it, we further propose our robust training method. Without involving adversarial training, our method could enhance networks intrinsic adversarial robustness against various adversarial attacks.
This paper aims to understand and improve the utility of the dropout operation from the perspective of game-theoretic interactions. We prove that dropout can suppress the strength of interactions between input variables of deep neural networks (DNNs)
We propose the first general PAC-Bayesian generalization bounds for adversarial robustness, that estimate, at test time, how much a model will be invariant to imperceptible perturbations in the input. Instead of deriving a worst-case analysis of the
Robust optimization has been widely used in nowadays data science, especially in adversarial training. However, little research has been done to quantify how robust optimization changes the optimizers and the prediction losses comparing to standard t
This short note highlights some links between two lines of research within the emerging topic of trustworthy machine learning: differential privacy and robustness to adversarial examples. By abstracting the definitions of both notions, we show that t
Recently, adversarial deception becomes one of the most considerable threats to deep neural networks. However, compared to extensive research in new designs of various adversarial attacks and defenses, the neural networks intrinsic robustness propert