ترغب بنشر مسار تعليمي؟ اضغط هنا

Algebras, traces, and boundary correlators in $mathcal{N}=4$ SYM

196   0   0.0 ( 0 )
 نشر من قبل Mykola Dedushenko
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study supersymmetric sectors at half-BPS boundaries and interfaces in the 4d $mathcal{N}=4$ super Yang-Mills with the gauge group $G$, which are described by associative algebras equipped with twisted traces. Such data are in one-to-one correspondence with an infinite set of defect correlation functions. We identify algebras and traces for known boundary conditions. Ward identities expressing the (twisted) periodicity of the trace highly constrain its structure, in many cases allowing for the complete solution. Our main examples in this paper are: the universal enveloping algebra $U(mathfrak{g})$ with the trace describing the Dirichlet boundary conditions; and the finite W-algebra $mathcal{W}(mathfrak{g},t_+)$ with the trace describing the Nahm pole boundary conditions.



قيم البحث

اقرأ أيضاً

102 - Ryo Suzuki 2020
We compute non-extremal three-point functions of scalar operators in $mathcal{N}=4$ super Yang-Mills at tree-level in $g_{YM}$ and at finite $N_c$, using the operator basis of the restricted Schur characters. We make use of the diagrammatic methods c alled quiver calculus to simplify the three-point functions. The results involve an invariant product of the generalized Racah-Wigner tensors ($6j$ symbols). Assuming that the invariant product is written by the Littlewood-Richardson coefficients, we show that the non-extremal three-point functions satisfy the large $N_c$ background independence; correspondence between the string excitations on $AdS_5 times S^5$ and those in the LLM geometry.
We calculate transition probabilities for various processes involving giant gravitons and small gravitons in AdS space, using the dual N=4 SYM theory. The normalization factors for these probabilities involve, in general, correlators for manifolds of non-trivial topology which are obtained by gluing simpler four-manifolds. This follows from the factorization properties which relate CFT correlators for different topologies. These points are illustrated, in the first instance, in the simpler example of a two dimensional Matrix CFT. We give the bulk five dimensional interpretation, involving neighborhoods of Witten graphs, of these gluing properties of the four dimensional boundary CFT. As a corollary we give a simple description, based on Witten graphs, of a multiplicity of bulk topologies corresponding to a fixed boundary topology. We also propose to interpret the correlators as topology-changing transition amplitudes between LLM geometries.
We consider the general $mathcal{N}{=},4,$ $d{=},3$ Galilean superalgebra with arbitrary central charges and study its dynamical realizations. Using the nonlinear realization techniques, we introduce a class of actions for $mathcal{N}{=},4$ three-dim ensional non-relativistic superparticle, such that they are linear in the central charge Maurer-Cartan one-forms. As a prerequisite to the quantization, we analyze the phase space constraints structure of our model for various choices of the central charges. The first class constraints generate gauge transformations, involving fermionic $kappa$-gauge transformations. The quantization of the model gives rise to the collection of free $mathcal{N}{=},4$, $d{=},3$ Galilean superfields, which can be further employed, e.g., for description of three-dimensional non-relativistic $mathcal{N}{=},4$ supersymmetric theories.
We consider four-point correlation functions of protected single-trace scalar operators in planar N = 4 supersymmetric Yang-Mills (SYM). We conjecture that all loop corrections derive from an integrand which enjoys a ten-dimensional symmetry. This sy mmetry combines spacetime and R-charge transformations. By considering a 10D light-like limit, we extend the correlator/amplitude duality by equating large R-charge octagons with Coulomb branch scattering amplitudes. Using results from integrability, this predicts new finite amplitudes as well as some Feynman integrals.
The exact expressions for integrated maximal $U(1)_Y$ violating (MUV) $n$-point correlators in $SU(N)$ ${mathcal N}=4$ supersymmetric Yang--Mills theory are determined. The analysis generalises previous results on the integrated correlator of four su perconformal primaries and is based on supersymmetric localisation. The integrated correlators are functions of $N$ and $tau=theta/(2pi)+4pi i/g_{_{YM}}^2$, and are expressed as two-dimensional lattice sums that are modular forms with holomorphic and anti-holomorphic weights $(w,-w)$ where $w=n-4$. The correlators satisfy Laplace-difference equations that relate the $SU(N+1)$, $SU(N)$ and $SU(N-1)$ expressions and generalise the equations previously found in the $w=0$ case. The correlators can be expressed as infinite sums of Eisenstein modular forms of weight $(w,-w)$. For any fixed value of $N$ the perturbation expansion of this correlator is found to start at order $( g_{_{YM}}^2 N)^w$. The contributions of Yang--Mills instantons of charge $k>0$ are of the form $q^k, f(g_{_{YM}})$, where $q=e^{2pi i tau}$ and $f(g_{_{YM}})= O(g_{_{YM}}^{-2w})$ when $g_{_{YM}}^2 ll 1$ anti-instanton contributions have charge $k<0$ and are of the form $bar q^{|k|} , hat f(g_{_{YM}})$, where $hat f(g_{_{YM}}) = O(g_{_{YM}}^{2w})$ when $g_{_{YM}}^2 ll 1$. Properties of the large-$N$ expansion are in agreement with expectations based on the low energy expansion of flat-space type IIB superstring amplitudes. We also comment on the relation of $n$-point MUV correlators to $(n-4)$-loop contributions to the four-point correlator. In particular, we argue that it is important to ensure the $SL(2, mathbb{Z})$-covariance even in the construction of perturbative loop integrands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا