ﻻ يوجد ملخص باللغة العربية
The exact expressions for integrated maximal $U(1)_Y$ violating (MUV) $n$-point correlators in $SU(N)$ ${mathcal N}=4$ supersymmetric Yang--Mills theory are determined. The analysis generalises previous results on the integrated correlator of four superconformal primaries and is based on supersymmetric localisation. The integrated correlators are functions of $N$ and $tau=theta/(2pi)+4pi i/g_{_{YM}}^2$, and are expressed as two-dimensional lattice sums that are modular forms with holomorphic and anti-holomorphic weights $(w,-w)$ where $w=n-4$. The correlators satisfy Laplace-difference equations that relate the $SU(N+1)$, $SU(N)$ and $SU(N-1)$ expressions and generalise the equations previously found in the $w=0$ case. The correlators can be expressed as infinite sums of Eisenstein modular forms of weight $(w,-w)$. For any fixed value of $N$ the perturbation expansion of this correlator is found to start at order $( g_{_{YM}}^2 N)^w$. The contributions of Yang--Mills instantons of charge $k>0$ are of the form $q^k, f(g_{_{YM}})$, where $q=e^{2pi i tau}$ and $f(g_{_{YM}})= O(g_{_{YM}}^{-2w})$ when $g_{_{YM}}^2 ll 1$ anti-instanton contributions have charge $k<0$ and are of the form $bar q^{|k|} , hat f(g_{_{YM}})$, where $hat f(g_{_{YM}}) = O(g_{_{YM}}^{2w})$ when $g_{_{YM}}^2 ll 1$. Properties of the large-$N$ expansion are in agreement with expectations based on the low energy expansion of flat-space type IIB superstring amplitudes. We also comment on the relation of $n$-point MUV correlators to $(n-4)$-loop contributions to the four-point correlator. In particular, we argue that it is important to ensure the $SL(2, mathbb{Z})$-covariance even in the construction of perturbative loop integrands.
This paper concerns a special class of $n$-point correlation functions of operators in the stress tensor supermultiplet of $mathcal{N}=4$ supersymmetric $SU(N)$ Yang-Mills theory. These are maximal $U(1)_Y$-violating correlators that violate the bonu
We present a novel expression for an integrated correlation function of four superconformal primaries in $SU(N)$ $mathcal{N}=4$ SYM. This integrated correlator, which is based on supersymmetric localisation, has been the subject of several recent dev
We study supersymmetric sectors at half-BPS boundaries and interfaces in the 4d $mathcal{N}=4$ super Yang-Mills with the gauge group $G$, which are described by associative algebras equipped with twisted traces. Such data are in one-to-one correspond
We compute the one-loop non-holomorphic effective potential for the N=4 SU(n) supersymmetric Yang-Mills theory with the gauge symmetry broken down to the maximal torus. Our approach remains powerful for arbitrary gauge groups and is based on the use
We calculate transition probabilities for various processes involving giant gravitons and small gravitons in AdS space, using the dual N=4 SYM theory. The normalization factors for these probabilities involve, in general, correlators for manifolds of