ترغب بنشر مسار تعليمي؟ اضغط هنا

Reducing false-positive biopsies with deep neural networks that utilize local and global information in screening mammograms

99   0   0.0 ( 0 )
 نشر من قبل Nan Wu
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Breast cancer is the most common cancer in women, and hundreds of thousands of unnecessary biopsies are done around the world at a tremendous cost. It is crucial to reduce the rate of biopsies that turn out to be benign tissue. In this study, we build deep neural networks (DNNs) to classify biopsied lesions as being either malignant or benign, with the goal of using these networks as second readers serving radiologists to further reduce the number of false positive findings. We enhance the performance of DNNs that are trained to learn from small image patches by integrating global context provided in the form of saliency maps learned from the entire image into their reasoning, similar to how radiologists consider global context when evaluating areas of interest. Our experiments are conducted on a dataset of 229,426 screening mammography exams from 141,473 patients. We achieve an AUC of 0.8 on a test set consisting of 464 benign and 136 malignant lesions.



قيم البحث

اقرأ أيضاً

96 - Peter Strom 2020
Background: The detection of perineural invasion (PNI) by carcinoma in prostate biopsies has been shown to be associated with poor prognosis. The assessment and quantification of PNI is; however, labor intensive. In the study we aimed to develop an a lgorithm based on deep neural networks to aid pathologists in this task. Methods: We collected, digitized and pixel-wise annotated the PNI findings in each of the approximately 80,000 biopsy cores from the 7,406 men who underwent biopsy in the prospective and diagnostic STHLM3 trial between 2012 and 2014. In total, 485 biopsy cores showed PNI. We also digitized more than 10% (n=8,318) of the PNI negative biopsy cores. Digitized biopsies from a random selection of 80% of the men were used to build deep neural networks, and the remaining 20% were used to evaluate the performance of the algorithm. Results: For the detection of PNI in prostate biopsy cores the network had an estimated area under the receiver operating characteristics curve of 0.98 (95% CI 0.97-0.99) based on 106 PNI positive cores and 1,652 PNI negative cores in the independent test set. For the pre-specified operating point this translates to sensitivity of 0.87 and specificity of 0.97. The corresponding positive and negative predictive values were 0.67 and 0.99, respectively. For localizing the regions of PNI within a slide we estimated an average intersection over union of 0.50 (CI: 0.46-0.55). Conclusion: We have developed an algorithm based on deep neural networks for detecting PNI in prostate biopsies with apparently acceptable diagnostic properties. These algorithms have the potential to aid pathologists in the day-to-day work by drastically reducing the number of biopsy cores that need to be assessed for PNI and by highlighting regions of diagnostic interest.
To reduce the storage requirements, remote sensing (RS) images are usually stored in compressed format. Existing scene classification approaches using deep neural networks (DNNs) require to fully decompress the images, which is a computationally dema nding task in operational applications. To address this issue, in this paper we propose a novel approach to achieve scene classification in JPEG 2000 compressed RS images. The proposed approach consists of two main steps: i) approximation of the finer resolution sub-bands of reversible biorthogonal wavelet filters used in JPEG 2000; and ii) characterization of the high-level semantic content of approximated wavelet sub-bands and scene classification based on the learnt descriptors. This is achieved by taking codestreams associated with the coarsest resolution wavelet sub-band as input to approximate finer resolution sub-bands using a number of transposed convolutional layers. Then, a series of convolutional layers models the high-level semantic content of the approximated wavelet sub-band. Thus, the proposed approach models the multiresolution paradigm given in the JPEG 2000 compression algorithm in an end-to-end trainable unified neural network. In the classification stage, the proposed approach takes only the coarsest resolution wavelet sub-bands as input, thereby reducing the time required to apply decoding. Experimental results performed on two benchmark aerial image archives demonstrate that the proposed approach significantly reduces the computational time with similar classification accuracies when compared to traditional RS scene classification approaches (which requires full image decompression).
We describe a new approach to automated Glaucoma detection in 3D Spectral Domain Optical Coherence Tomography (OCT) optic nerve scans. First, we gathered a unique and diverse multi-ethnic dataset of OCT scans consisting of glaucoma and non-glaucomato us cases obtained from four tertiary care eye hospitals located in four different countries. Using this longitudinal data, we achieved state-of-the-art results for automatically detecting Glaucoma from a single raw OCT using a 3D Deep Learning system. These results are close to human doctors in a variety of settings across heterogeneous datasets and scanning environments. To verify correctness and interpretability of the automated categorization, we used saliency maps to find areas of focus for the model. Matching human doctor behavior, the model predictions indeed correlated with the conventional diagnostic parameters in the OCT printouts, such as the retinal nerve fiber layer. We further used our model to find new areas in the 3D data that are presently not being identified as a diagnostic parameter to detect glaucoma by human doctors. Namely, we found that the Lamina Cribrosa (LC) region can be a valuable source of helpful diagnostic information previously unavailable to doctors during routine clinical care because it lacks a quantitative printout. Our model provides such volumetric quantification of this region. We found that even when a majority of the RNFL is removed, the LC region can distinguish glaucoma. This is clinically relevant in high myopes, when the RNFL is already reduced, and thus the LC region may help differentiate glaucoma in this confounding situation. We further generalize this approach to create a new algorithm called DiagFind that provides a recipe for finding new diagnostic information in medical imagery that may have been previously unusable by doctors.
The Gleason score is the most important prognostic marker for prostate cancer patients but suffers from significant inter-observer variability. We developed a fully automated deep learning system to grade prostate biopsies. The system was developed u sing 5834 biopsies from 1243 patients. A semi-automatic labeling technique was used to circumvent the need for full manual annotation by pathologists. The developed system achieved a high agreement with the reference standard. In a separate observer experiment, the deep learning system outperformed 10 out of 15 pathologists. The system has the potential to improve prostate cancer prognostics by acting as a first or second reader.
Deep learning methods for classifying medical images have demonstrated impressive accuracy in a wide range of tasks but often these models are hard to interpret, limiting their applicability in clinical practice. In this work we introduce a convoluti onal neural network model for identifying disease in temporal sequences of cardiac MR segmentations which is interpretable in terms of clinically familiar measurements. The model is based around a variational autoencoder, reducing the input into a low-dimensional latent space in which classification occurs. We then use the recently developed `concept activation vector technique to associate concepts which are diagnostically meaningful (eg. clinical biomarkers such as `low left-ventricular ejection fraction) to certain vectors in the latent space. These concepts are then qualitatively inspected by observing the change in the image domain resulting from interpolations in the latent space in the direction of these vectors. As a result, when the model classifies images it is also capable of providing naturally interpretable concepts relevant to that classification and demonstrating the meaning of those concepts in the image domain. Our approach is demonstrated on the UK Biobank cardiac MRI dataset where we detect the presence of coronary artery disease.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا