ﻻ يوجد ملخص باللغة العربية
We describe a new approach to automated Glaucoma detection in 3D Spectral Domain Optical Coherence Tomography (OCT) optic nerve scans. First, we gathered a unique and diverse multi-ethnic dataset of OCT scans consisting of glaucoma and non-glaucomatous cases obtained from four tertiary care eye hospitals located in four different countries. Using this longitudinal data, we achieved state-of-the-art results for automatically detecting Glaucoma from a single raw OCT using a 3D Deep Learning system. These results are close to human doctors in a variety of settings across heterogeneous datasets and scanning environments. To verify correctness and interpretability of the automated categorization, we used saliency maps to find areas of focus for the model. Matching human doctor behavior, the model predictions indeed correlated with the conventional diagnostic parameters in the OCT printouts, such as the retinal nerve fiber layer. We further used our model to find new areas in the 3D data that are presently not being identified as a diagnostic parameter to detect glaucoma by human doctors. Namely, we found that the Lamina Cribrosa (LC) region can be a valuable source of helpful diagnostic information previously unavailable to doctors during routine clinical care because it lacks a quantitative printout. Our model provides such volumetric quantification of this region. We found that even when a majority of the RNFL is removed, the LC region can distinguish glaucoma. This is clinically relevant in high myopes, when the RNFL is already reduced, and thus the LC region may help differentiate glaucoma in this confounding situation. We further generalize this approach to create a new algorithm called DiagFind that provides a recipe for finding new diagnostic information in medical imagery that may have been previously unusable by doctors.
A supervised diagnosis system for digital mammogram is developed. The diagnosis processes are done by transforming the data of the images into a feature vector using wavelets multilevel decomposition. This vector is used as the feature tailored towar
Colorectal cancer is the third most common cancer-related death after lung cancer and breast cancer worldwide. The risk of developing colorectal cancer could be reduced by early diagnosis of polyps during a colonoscopy. Computer-aided diagnosis syste
For several skin conditions such as vitiligo, accurate segmentation of lesions from skin images is the primary measure of disease progression and severity. Existing methods for vitiligo lesion segmentation require manual intervention. Unfortunately,
A cascaded multi-planar scheme with a modified residual U-Net architecture was used to segment thalamic nuclei on conventional and white-matter-nulled (WMn) magnetization prepared rapid gradient echo (MPRAGE) data. A single network was optimized to w
Quantitative ultrasound (QUS) can reveal crucial information on tissue properties such as scatterer density. If the scatterer density per resolution cell is above or below 10, the tissue is considered as fully developed speckle (FDS) or low-density s