ﻻ يوجد ملخص باللغة العربية
Many applications require to learn, mine, analyze and visualize large-scale graphs. These graphs are often too large to be addressed efficiently using conventional graph processing technologies. Many applications have requirements to analyze, transform, visualize and learn large scale graphs. These graphs are often too large to be addressed efficiently using conventional graph processing technologies. Recent literatures convey that graph sampling/random walk could be an efficient solution. In this paper, we propose, to the best of our knowledge, the first GPU-based framework for graph sampling/random walk. First, our framework provides a generic API which allows users to implement a wide range of sampling and random walk algorithms with ease. Second, offloading this framework on GPU, we introduce warp-centric parallel selection, and two optimizations for collision migration. Third, towards supporting graphs that exceed GPU memory capacity, we introduce efficient data transfer optimizations for out-of-memory sampling, such as workload-aware scheduling and batched multi-instance sampling. In its entirety, our framework constantly outperforms the state-of-the-art projects. First, our framework provides a generic API which allows users to implement a wide range of sampling and random walk algorithms with ease. Second, offloading this framework on GPU, we introduce warp-centric parallel selection, and two novel optimizations for collision migration. Third, towards supporting graphs that exceed the GPU memory capacity, we introduce efficient data transfer optimizations for out-of-memory and multi-GPU sampling, such as workload-aware scheduling and batched multi-instance sampling. Taken together, our framework constantly outperforms the state of the art projects in addition to the capability of supporting a wide range of sampling and random walk algorithms.
Linear-time algorithms that are traditionally used to shuffle data on CPUs, such as the method of Fisher-Yates, are not well suited to implementation on GPUs due to inherent sequential dependencies. Moreover, existing parallel shuffling algorithms sh
The SIMT execution model is commonly used for general GPU development. CUDA and OpenCL developers write scalar code that is implicitly parallelized by compiler and hardware. On Intel GPUs, however, this abstraction has profound performance implicatio
Load-balancing among the threads of a GPU for graph analytics workloads is difficult because of the irregular nature of graph applications and the high variability in vertex degrees, particularly in power-law graphs. We describe a novel load balancin
The modern deep learning method based on backpropagation has surged in popularity and has been used in multiple domains and application areas. At the same time, there are other -- less-known -- machine learning algorithms with a mature and solid theo
The development of Graph Neural Networks (GNNs) has led to great progress in machine learning on graph-structured data. These networks operate via diffusing information across the graph nodes while capturing the structure of the graph. Recently there