ترغب بنشر مسار تعليمي؟ اضغط هنا

Bandwidth-Optimal Random Shuffling for GPUs

87   0   0.0 ( 0 )
 نشر من قبل Rory Mitchell
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Linear-time algorithms that are traditionally used to shuffle data on CPUs, such as the method of Fisher-Yates, are not well suited to implementation on GPUs due to inherent sequential dependencies. Moreover, existing parallel shuffling algorithms show unsatisfactory performance on GPU architectures because they incur a large number of read/write operations to high latency global memory. To address this, we provide a method of generating pseudo-random permutations in parallel by fusing suitable pseudo-random bijective functions with stream compaction operations. Our algorithm, termed `bijective shuffle trades increased per-thread arithmetic operations for reduced global memory transactions. It is work-efficient, deterministic, and only requires a single global memory read and write per shuffle input, thus maximising use of global memory bandwidth. To empirically demonstrate the correctness of the algorithm, we develop a consistent, linear time, statistical test for the quality of pseudo-random permutations based on kernel space embeddings. Empirical results show that the bijective shuffle algorithm outperforms competing algorithms on multicore CPUs and GPUs, showing improvements of between one and two orders of magnitude and approaching peak device bandwidth.



قيم البحث

اقرأ أيضاً

Many applications require to learn, mine, analyze and visualize large-scale graphs. These graphs are often too large to be addressed efficiently using conventional graph processing technologies. Many applications have requirements to analyze, transfo rm, visualize and learn large scale graphs. These graphs are often too large to be addressed efficiently using conventional graph processing technologies. Recent literatures convey that graph sampling/random walk could be an efficient solution. In this paper, we propose, to the best of our knowledge, the first GPU-based framework for graph sampling/random walk. First, our framework provides a generic API which allows users to implement a wide range of sampling and random walk algorithms with ease. Second, offloading this framework on GPU, we introduce warp-centric parallel selection, and two optimizations for collision migration. Third, towards supporting graphs that exceed GPU memory capacity, we introduce efficient data transfer optimizations for out-of-memory sampling, such as workload-aware scheduling and batched multi-instance sampling. In its entirety, our framework constantly outperforms the state-of-the-art projects. First, our framework provides a generic API which allows users to implement a wide range of sampling and random walk algorithms with ease. Second, offloading this framework on GPU, we introduce warp-centric parallel selection, and two novel optimizations for collision migration. Third, towards supporting graphs that exceed the GPU memory capacity, we introduce efficient data transfer optimizations for out-of-memory and multi-GPU sampling, such as workload-aware scheduling and batched multi-instance sampling. Taken together, our framework constantly outperforms the state of the art projects in addition to the capability of supporting a wide range of sampling and random walk algorithms.
RAR uses classic symmetric encryption algorithm SHA-1 hashing and AES algorithm for encryption, and the only method of password recovery is brute force, which is very time-consuming. In this paper, we present an approach using GPUs to speed up the pa ssword recovery process. However, because the major calculation and time-consuming part, SHA-1 hashing, is hard to be parallelized, so this paper adopts coarse granularity parallel. That is, one GPU thread is responsible for the validation of one password. We mainly use three optimization methods to optimize this parallel version: asynchronous parallel between CPU and GPU, redundant calculations and conditional statements reduction, and the usage of registers optimization. Experiment result shows that the final version reaches 43~57 times speedup on an AMD FirePro W8000 GPU, compared to a well-optimized serial version on Intel Core i5 CPU.
In this new version of ZMCintegral, we have added the functionality of multi-function integrations, i.e. the ability to integrate more than $10^{3}$ different functions on GPUs. The Python API remains the similar as the previou
90 - Yanhao Chen 2019
Priority queue, often implemented as a heap, is an abstract data type that has been used in many well-known applications like Dijkstras shortest path algorithm, Prims minimum spanning tree, Huffman encoding, and the branch-and-bound algorithm. Howeve r, it is challenging to exploit the parallelism of the heap on GPUs since the control divergence and memory irregularity must be taken into account. In this paper, we present a parallel generalized heap model that works effectively on GPUs. We also prove the linearizability of our generalized heap model which enables us to reason about the expected results. We evaluate our concurrent heap thoroughly and show a maximum 19.49X speedup compared to the sequential CPU implementation and 2.11X speedup compared with the existing GPU implementation. We also apply our heap to single source shortest path with up to 1.23X speedup and 0/1 knapsack problem with up to 12.19X speedup.
Counting k-cliques in a graph is an important problem in graph analysis with many applications. Counting k-cliques is typically done by traversing search trees starting at each vertex in the graph. An important optimization is to eliminate search tre e branches that discover the same clique redundantly. Eliminating redundant clique discovery is typically done via graph orientation or pivoting. Parallel implementations for both of these approaches have demonstrated promising performance on CPUs. In this paper, we present our GPU implementations of k-clique counting for both the graph orientation and pivoting approaches. Our implementations explore both vertex-centric and edge-centric parallelization schemes, and replace recursive search tree traversal with iterative traversal based on an explicitly-managed shared stack. We also apply various optimizations to reduce memory consumption and improve the utilization of parallel execution resources. Our evaluation shows that our best GPU implementation outperforms the best state-of-the-art parallel CPU implementation by a geometric mean speedup of 12.39x, 6.21x, and 18.99x for k = 4, 7, and 10, respectively. We also evaluate the impact of the choice of parallelization scheme and the incremental speedup of each optimization. Our code will be open-sourced to enable further research on parallelizing k-clique counting on GPUs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا