ﻻ يوجد ملخص باللغة العربية
The ultrafast dynamics of photon-to-charge conversion in an organic light harvesting system is studied by femtosecond time-resolved X-ray photoemission spectroscopy (TR-XPS) at the free-electron laser FLASH. This novel experimental technique provides site-specific information about charge separation and enables the monitoring of free charge carrier generation dynamics on their natural timescale, here applied to the model donor-acceptor system CuPc:C$_{60}$. A previously unobserved channel for exciton dissociation into mobile charge carriers is identified, providing the first direct, real-time characterization of the timescale and efficiency of charge generation from low-energy charge-transfer states in an organic heterojunction. The findings give strong support to the emerging realization that charge separation even from energetically disfavored excitonic states is contributing significantly, indicating new options for light harvesting in organic heterojunctions.
In polymeric semiconductors, charge carriers are polarons, which means that the excess charge deforms the molecular structure of the polymer chain that hosts it. This effect results in distinctive signatures in the vibrational modes of the polymer. W
We investigate the charge and lattice states in a quasi-one-dimensional organic ferroelectric material, TTF-QCl$_{4}$, under pressures of up to 35 kbar by nuclear quadrupole resonance experiments. The results reveal a global pressure-temperature phas
We use a spatially resolved, direct spectroscopic probe for electronic structure with an additional sensitivity to chemical compositions to investigate high-quality single crystal samples of La_{1/4}Pr_{3/8}Ca_{3/8}MnO_{3}, establishing the formation
We use trapped atomic ions forming a hybrid Coulomb crystal, and exploit its phonons to study an isolated quantum system composed of a single spin coupled to an engineered bosonic environment. We increase the complexity of the system by adding ions a
The electronic wavefunctions of an atom or molecule are affected by its interactions with its environment. These interactions dictate electronic and optical processes at interfaces, and is especially relevant in the case of thin film optoelectronic d