ﻻ يوجد ملخص باللغة العربية
We calculate the mass shift and thermal decay width of the $J/psi$ near the QCD transition temperature $T_c$ by imposing two independent constraints on these variables that can be obtained first by solving the Schrodinger equation and second from the QCD sum rule approach. While the real part of the potential is determined by comparing the QCD sum rule result for charmonium and the D meson to that from the potential model result, the imaginary potential is taken to be proportional to the perturbative form multiplied by a constant factor, which in turn can be determined by applying the two independent constraints. The result shows that the binding energy and the thermal width becomes similar in magnitude at around $T=1.09T_c$, above which the sum rule analysis also becomes unstable, strongly suggesting that the $J/psi$ will melt slightly above $T_c$.
A significant excess of J/$psi$ yield at very low transverse momentum ($p_T < 0.3$ GeV/c) was observed by the ALICE and STAR collaborations in peripheral A+A collisions, which points to evidence of coherent photoproduction of J/$psi$ in violent hadro
Measured J/Psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets are analyzed within a Glauber framework which takes into account energy loss of the beam proton, the time delay of particle production due
Understanding various fundamental properties of nucleons and nuclei are among the most important scientific goals at the upcoming Electron-Ion Collider (EIC). With the unprecedented opportunity provided by the next-generation machine, the EIC might p
The J/psi is considered to be among the most important probes for the deconfined quark gluon plasma (QGP) created by relativistic heavy ion collisions. While the J/psi is thought to dissociate in the QGP by Debye color screening, there are competing
In a recent measurement LHCb reported pronounced structures in the $J/psi J/psi$ spectrum. One of the various possible explanations of those is that they emerge from non-perturbative interactions of vector charmonia. It is thus important to understan