ترغب بنشر مسار تعليمي؟ اضغط هنا

J/psi Production and Absorption in High Energy Proton-Nucleus Collisions

273   0   0.0 ( 0 )
 نشر من قبل Charles Gale
 تاريخ النشر 1998
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Measured J/Psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets are analyzed within a Glauber framework which takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/Psi on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, previously determined by Drell-Yan production in proton-nucleus collisions, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/Psi on nuclear targets.



قيم البحث

اقرأ أيضاً

91 - Charles Gale , 1999
We show that the distributions of outgoing protons and charged hadrons in high energy proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton collisions. The only adjustable parameter required is the shift in rapidity of a produced charged meson when it encounters a target nucleon. Its fitted value is 0.16. Next, we apply this linear extrapolation to precisely measured Drell-Yan cross sections for 800 GeV protons incident on a variety of nuclear targets which exhibit a deviation from linear scaling in the atomic number A. We show that this deviation can be accounted for by energy degradation of the proton as it passes through the nucleus if account is taken of the time delay of particle production due to quantum coherence. We infer an average proper coherence time of 0.4 +/- 0.1 fm/c, corresponding to a coherence path length of 8 +/- 2 fm in the rest frame of the nucleus. Finally, we apply the linear extrapolation to measured J/Psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets. Our analysis takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/Psi on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, which is consistent with Drell-Yan production, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/Psi on nuclear targets.
The distributions of outgoing protons and charged hadrons in high energy proton-nucleus collisions are described rather well by a linear extrapolation from proton-proton collisions. This linear extrapolation is applied to precisely measured Drell-Yan cross sections for 800 GeV protons incident on a variety of nuclear targets. The deviation from linear scaling in the atomic number A can be accounted for by energy degradation of the proton as it passes through the nucleus if account is taken of the time delay of particle production due to quantum coherence. We infer an average proper coherence time of 0.4 +/- 0.1 fm/c. Then we apply the linear extrapolation to measured J/psi production cross sections for 200 and 450 GeV/c protons incident on a variety of nuclear targets. Our analysis takes into account energy loss of the beam proton, the time delay of particle production due to quantum coherence, and absorption of the J/psi on nucleons. The best representation is obtained for a coherence time of 0.5 fm/c, which is consistent with Drell-Yan production, and an absorption cross section of 3.6 mb, which is consistent with the value deduced from photoproduction of the J/psi on nuclear targets. Finally, we compare to recent J/psi data from S+U and Pb+Pb collisions at the SPS. The former are reproduced reasonably well with no new parameters, but not the latter.
Understanding the detailed production and hadronization mechanisms for heavy quarkonia and their modification in a nuclear environment presents one of the major challenges in QCD. Calculations including nuclear-modified parton distribution functions (nPDFs) and fitting of break-up cross sections (sigma_breakup) as parameters have been successful at describing many features of J/psi modification in proton(deuteron)-nucleus collisions. In this paper, we extend these calculations to explore different geometric dependencies of the modification and confront them with new experimental results from the PHENIX experiment. We find that no combination of nPDFs and sigma_breakup, regardless of the nPDF parameter set and the assumed geometric dependence, can simultaneously describe the entire rapidity and centrality dependence of J/psi modifications in d+Au collisions at sqrt(s_NN) = 200 GeV. We also compare the data with coherence calculations and find them unable to describe the full rapidity and centrality dependence as well. We discuss how these calculations might be extended and further tested, in addition to discussing other physics mechanisms including initial-state parton energy loss.
A study of prompt and non-prompt J/$psi$ production as a function of charged-particle multiplicity in inelastic proton--proton (pp) collisions at a centre-of-mass energy of $sqrt{s}$ = 13 TeV based on calculations using the PYTHIA8 Monte Carlo is rep orted. Recent experimental data shows an intriguing stronger-than-linear increase of the self-normalized J/$psi$ yield with multiplicity; several models, based on initial or final state effects, have been able to describe the observed behaviour. In this paper, the microscopic reasons for this behaviour, like the role of multiple parton interactions, colour reconnections and auto-correlations are investigated. It is observed that the stronger-than-linear increase and the transverse momentum ($p_{rm T}$) dependence, contrary to what is predicted by the other available models, can be attributed to auto-correlation effects only. In absence of auto-correlation effects, the increase of the yield of J/$psi$ with multiplicity -- and in general for all hard processes -- is weaker than linear for multiplicities exceeding about three times the mean multiplicity. The possibility of disentangling auto-correlation effects from other physical phenomena by measuring the charged-particle multiplicity in different pseudo-rapidity and azimuthal regions relative to the J/$psi$ direction is investigated. In this regard, it is suggested to extend the experimental measurements of J/$psi$ production as a function of the charged-particle multiplicity by determining the multiplicity in several azimuthal regions and in particular in the Transverse region with respect to the direction of the J/$psi$ meson.
207 - R. Arnaldi , K. Banicz , J. Castor 2010
The NA60 experiment has studied J/psi production in p-A collisions at 158 and 400 GeV, at the CERN SPS. Nuclear effects on the J/psi yield have been estimated from the A-dependence of the production cross section ratios sigma_{J/psi}^{A}/sigma_{J/psi }^{Be} (A=Al, Cu, In, W, Pb, U). We observe a significant nuclear suppression of the J/psi yield per nucleon-nucleon collision, with a larger effect at lower incident energy, and we compare this result with previous observations by other fixed-target experiments. An attempt to disentangle the different contributions to the observed suppression has been carried out by studying the dependence of nuclear effects on x_2, the fraction of nucleon momentum carried by the interacting parton in the target nucleus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا