ﻻ يوجد ملخص باللغة العربية
Ambient backscatter communication (AmBC) leverages the existing ambient radio frequency (RF) environment to implement communication with battery-free devices. The key challenge in the development of AmBC is the very weak RF signals backscattered by the AmBC Tag. To overcome this challenge, we propose the use of orthogonal space-time block codes (OSTBC) by incorporating multiple antennas at the Tag as well as at the Reader. Our approach considers both coherent and non-coherent OSTBC so that systems with and without channel state information can be considered. To allow the application of OSTBC, we develop an approximate linearized and normalized multiple-input multiple-output (MIMO) channel model for the AmBC system. This MIMO channel model is shown to be accurate for a wide range of useful operating conditions. Two coherent detectors and a non-coherent detector are also provided based on the proposed AmBC channel model. Simulation results show that enhanced bit error rate performance can be achieved, demonstrating the benefit of using multiple antennas at the Tag as well as the Reader.
Ambient Backscatter Communication (AmBC) is an emerging communication technology that can enable green Internet-of-Things deployments. The widespread acceptance of this paradigm is limited by low Signal-to-Interference-Plus-Noise Ratio (SINR) of the
In a distributed space-time coding scheme, based on the relay channel model, the relay nodes co-operate to linearly process the transmitted signal from the source and forward them to the destination such that the signal at the destination appears as
We consider an ambient backscatter communication (AmBC) system aided by an intelligent reflecting surface (IRS). The optimization of the IRS to assist AmBC is extremely difficult when there is no prior channel knowledge, for which no design solutions
A polar-coded transmission (PCT) scheme with joint channel estimation and decoding is proposed for channels with unknown channel state information (CSI). The CSI is estimated via successive cancellation (SC) decoding and the constraints imposed by th
Ambient backscatter communications is an emerging paradigm and a key enabler for pervasive connectivity of low-powered wireless devices. It is primarily beneficial in the Internet of things (IoT) and the situations where computing and connectivity ca